Metamath Proof Explorer


Theorem clwwlknwrd

Description: A closed walk of a fixed length as word is a word over the vertices. (Contributed by AV, 30-Apr-2021)

Ref Expression
Hypothesis clwwlknwrd.v V = Vtx G
Assertion clwwlknwrd W N ClWWalksN G W Word V

Proof

Step Hyp Ref Expression
1 clwwlknwrd.v V = Vtx G
2 isclwwlkn W N ClWWalksN G W ClWWalks G W = N
3 1 clwwlkbp W ClWWalks G G V W Word V W
4 3 simp2d W ClWWalks G W Word V
5 4 adantr W ClWWalks G W = N W Word V
6 2 5 sylbi W N ClWWalksN G W Word V