Metamath Proof Explorer


Theorem clwwlknwwlkncl

Description: Obtaining a closed walk (as word) by appending the first symbol to the word representing a walk. (Contributed by Alexander van der Vekens, 29-Sep-2018) (Revised by AV, 26-Apr-2021) (Revised by AV, 22-Mar-2022)

Ref Expression
Assertion clwwlknwwlkncl W N ClWWalksN G W ++ ⟨“ W 0 ”⟩ w N WWalksN G | lastS w = w 0

Proof

Step Hyp Ref Expression
1 clwwlknnn W N ClWWalksN G N
2 eqid Vtx G = Vtx G
3 2 clwwlknbp W N ClWWalksN G W Word Vtx G W = N
4 eqid Edg G = Edg G
5 2 4 clwwlknp W N ClWWalksN G W Word Vtx G W = N i 0 ..^ N 1 W i W i + 1 Edg G lastS W W 0 Edg G
6 3simpc W Word Vtx G W = N i 0 ..^ N 1 W i W i + 1 Edg G lastS W W 0 Edg G i 0 ..^ N 1 W i W i + 1 Edg G lastS W W 0 Edg G
7 5 6 syl W N ClWWalksN G i 0 ..^ N 1 W i W i + 1 Edg G lastS W W 0 Edg G
8 eqid w N WWalksN G | lastS w = w 0 = w N WWalksN G | lastS w = w 0
9 8 clwwlkel N W Word Vtx G W = N i 0 ..^ N 1 W i W i + 1 Edg G lastS W W 0 Edg G W ++ ⟨“ W 0 ”⟩ w N WWalksN G | lastS w = w 0
10 1 3 7 9 syl3anc W N ClWWalksN G W ++ ⟨“ W 0 ”⟩ w N WWalksN G | lastS w = w 0