Metamath Proof Explorer


Theorem cm2ji

Description: A lattice element that commutes with two others also commutes with their join. Theorem 4.2 of Beran p. 49. (Contributed by NM, 11-May-2009) (New usage is discouraged.)

Ref Expression
Hypotheses fh1.1 A C
fh1.2 B C
fh1.3 C C
fh1.4 A 𝐶 B
fh1.5 A 𝐶 C
Assertion cm2ji A 𝐶 B C

Proof

Step Hyp Ref Expression
1 fh1.1 A C
2 fh1.2 B C
3 fh1.3 C C
4 fh1.4 A 𝐶 B
5 fh1.5 A 𝐶 C
6 1 2 3 3pm3.2i A C B C C C
7 4 5 pm3.2i A 𝐶 B A 𝐶 C
8 cm2j A C B C C C A 𝐶 B A 𝐶 C A 𝐶 B C
9 6 7 8 mp2an A 𝐶 B C