Database
COMPLEX HILBERT SPACE EXPLORER (DEPRECATED)
Properties of Hilbert subspaces
Foulis-Holland theorem
cm2ji
Metamath Proof Explorer
Description: A lattice element that commutes with two others also commutes with their
join. Theorem 4.2 of Beran p. 49. (Contributed by NM , 11-May-2009)
(New usage is discouraged.)
Ref
Expression
Hypotheses
fh1.1
⊢ A ∈ C ℋ
fh1.2
⊢ B ∈ C ℋ
fh1.3
⊢ C ∈ C ℋ
fh1.4
⊢ A 𝐶 ℋ B
fh1.5
⊢ A 𝐶 ℋ C
Assertion
cm2ji
⊢ A 𝐶 ℋ B ∨ ℋ C
Proof
Step
Hyp
Ref
Expression
1
fh1.1
⊢ A ∈ C ℋ
2
fh1.2
⊢ B ∈ C ℋ
3
fh1.3
⊢ C ∈ C ℋ
4
fh1.4
⊢ A 𝐶 ℋ B
5
fh1.5
⊢ A 𝐶 ℋ C
6
1 2 3
3pm3.2i
⊢ A ∈ C ℋ ∧ B ∈ C ℋ ∧ C ∈ C ℋ
7
4 5
pm3.2i
⊢ A 𝐶 ℋ B ∧ A 𝐶 ℋ C
8
cm2j
⊢ A ∈ C ℋ ∧ B ∈ C ℋ ∧ C ∈ C ℋ ∧ A 𝐶 ℋ B ∧ A 𝐶 ℋ C → A 𝐶 ℋ B ∨ ℋ C
9
6 7 8
mp2an
⊢ A 𝐶 ℋ B ∨ ℋ C