Metamath Proof Explorer


Theorem cm2mi

Description: A lattice element that commutes with two others also commutes with their meet. Theorem 4.2 of Beran p. 49. (Contributed by NM, 11-May-2009) (New usage is discouraged.)

Ref Expression
Hypotheses fh1.1 A C
fh1.2 B C
fh1.3 C C
fh1.4 A 𝐶 B
fh1.5 A 𝐶 C
Assertion cm2mi A 𝐶 B C

Proof

Step Hyp Ref Expression
1 fh1.1 A C
2 fh1.2 B C
3 fh1.3 C C
4 fh1.4 A 𝐶 B
5 fh1.5 A 𝐶 C
6 2 choccli B C
7 3 choccli C C
8 1 2 4 cmcm2ii A 𝐶 B
9 1 3 5 cmcm2ii A 𝐶 C
10 1 6 7 8 9 cm2ji A 𝐶 B C
11 2 3 chdmm1i B C = B C
12 10 11 breqtrri A 𝐶 B C
13 2 3 chincli B C C
14 1 13 cmcm2i A 𝐶 B C A 𝐶 B C
15 12 14 mpbir A 𝐶 B C