Metamath Proof Explorer


Theorem cmbr

Description: Binary relation expressing A commutes with B . Definition of commutes in Kalmbach p. 20. (Contributed by NM, 14-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion cmbr A C B C A 𝐶 B A = A B A B

Proof

Step Hyp Ref Expression
1 eleq1 x = A x C A C
2 1 anbi1d x = A x C y C A C y C
3 id x = A x = A
4 ineq1 x = A x y = A y
5 ineq1 x = A x y = A y
6 4 5 oveq12d x = A x y x y = A y A y
7 3 6 eqeq12d x = A x = x y x y A = A y A y
8 2 7 anbi12d x = A x C y C x = x y x y A C y C A = A y A y
9 eleq1 y = B y C B C
10 9 anbi2d y = B A C y C A C B C
11 ineq2 y = B A y = A B
12 fveq2 y = B y = B
13 12 ineq2d y = B A y = A B
14 11 13 oveq12d y = B A y A y = A B A B
15 14 eqeq2d y = B A = A y A y A = A B A B
16 10 15 anbi12d y = B A C y C A = A y A y A C B C A = A B A B
17 df-cm 𝐶 = x y | x C y C x = x y x y
18 8 16 17 brabg A C B C A 𝐶 B A C B C A = A B A B
19 18 bianabs A C B C A 𝐶 B A = A B A B