Metamath Proof Explorer


Theorem cmbr2i

Description: Alternate definition of the commutes relation. Remark in Kalmbach p. 23. (Contributed by NM, 7-Aug-2004) (New usage is discouraged.)

Ref Expression
Hypotheses pjoml2.1 A C
pjoml2.2 B C
Assertion cmbr2i A 𝐶 B A = A B A B

Proof

Step Hyp Ref Expression
1 pjoml2.1 A C
2 pjoml2.2 B C
3 1 2 cmcm4i A 𝐶 B A 𝐶 B
4 1 choccli A C
5 2 choccli B C
6 4 5 cmbri A 𝐶 B A = A B A B
7 eqcom A = A B A B A B A B = A
8 1 2 chjcli A B C
9 1 5 chjcli A B C
10 8 9 chincli A B A B C
11 10 1 chcon3i A B A B = A A = A B A B
12 8 9 chdmm1i A B A B = A B A B
13 1 2 chdmj1i A B = A B
14 1 5 chdmj1i A B = A B
15 13 14 oveq12i A B A B = A B A B
16 12 15 eqtri A B A B = A B A B
17 16 eqeq2i A = A B A B A = A B A B
18 7 11 17 3bitrri A = A B A B A = A B A B
19 3 6 18 3bitri A 𝐶 B A = A B A B