Metamath Proof Explorer


Theorem cmbr3

Description: Alternate definition for the commutes relation. Lemma 3 of Kalmbach p. 23. (Contributed by NM, 14-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion cmbr3 A C B C A 𝐶 B A A B = A B

Proof

Step Hyp Ref Expression
1 breq1 A = if A C A 0 A 𝐶 B if A C A 0 𝐶 B
2 id A = if A C A 0 A = if A C A 0
3 fveq2 A = if A C A 0 A = if A C A 0
4 3 oveq1d A = if A C A 0 A B = if A C A 0 B
5 2 4 ineq12d A = if A C A 0 A A B = if A C A 0 if A C A 0 B
6 ineq1 A = if A C A 0 A B = if A C A 0 B
7 5 6 eqeq12d A = if A C A 0 A A B = A B if A C A 0 if A C A 0 B = if A C A 0 B
8 1 7 bibi12d A = if A C A 0 A 𝐶 B A A B = A B if A C A 0 𝐶 B if A C A 0 if A C A 0 B = if A C A 0 B
9 breq2 B = if B C B 0 if A C A 0 𝐶 B if A C A 0 𝐶 if B C B 0
10 oveq2 B = if B C B 0 if A C A 0 B = if A C A 0 if B C B 0
11 10 ineq2d B = if B C B 0 if A C A 0 if A C A 0 B = if A C A 0 if A C A 0 if B C B 0
12 ineq2 B = if B C B 0 if A C A 0 B = if A C A 0 if B C B 0
13 11 12 eqeq12d B = if B C B 0 if A C A 0 if A C A 0 B = if A C A 0 B if A C A 0 if A C A 0 if B C B 0 = if A C A 0 if B C B 0
14 9 13 bibi12d B = if B C B 0 if A C A 0 𝐶 B if A C A 0 if A C A 0 B = if A C A 0 B if A C A 0 𝐶 if B C B 0 if A C A 0 if A C A 0 if B C B 0 = if A C A 0 if B C B 0
15 h0elch 0 C
16 15 elimel if A C A 0 C
17 15 elimel if B C B 0 C
18 16 17 cmbr3i if A C A 0 𝐶 if B C B 0 if A C A 0 if A C A 0 if B C B 0 = if A C A 0 if B C B 0
19 8 14 18 dedth2h A C B C A 𝐶 B A A B = A B