Metamath Proof Explorer


Theorem cmbr3i

Description: Alternate definition for the commutes relation. Lemma 3 of Kalmbach p. 23. (Contributed by NM, 6-Dec-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjoml2.1 A C
pjoml2.2 B C
Assertion cmbr3i A 𝐶 B A A B = A B

Proof

Step Hyp Ref Expression
1 pjoml2.1 A C
2 pjoml2.2 B C
3 1 2 cmcmi A 𝐶 B B 𝐶 A
4 2 1 cmbr2i B 𝐶 A B = B A B A
5 3 4 bitri A 𝐶 B B = B A B A
6 ineq2 B = B A B A A B = A B A B A
7 inass A B A B A = A B A B A
8 2 1 chjcomi B A = A B
9 8 ineq2i A B A = A A B
10 1 2 chabs2i A A B = A
11 9 10 eqtri A B A = A
12 1 choccli A C
13 2 12 chjcomi B A = A B
14 11 13 ineq12i A B A B A = A A B
15 7 14 eqtr3i A B A B A = A A B
16 6 15 eqtr2di B = B A B A A A B = A B
17 5 16 sylbi A 𝐶 B A A B = A B
18 inss1 A B A
19 2 choccli B C
20 1 19 chincli A B C
21 20 1 pjoml2i A B A A B A B A = A
22 18 21 ax-mp A B A B A = A
23 20 choccli A B C
24 23 1 chincli A B A C
25 20 24 chjcomi A B A B A = A B A A B
26 22 25 eqtr3i A = A B A A B
27 1 2 chdmm3i A B = A B
28 27 ineq2i A A B = A A B
29 incom A A B = A B A
30 28 29 eqtr3i A A B = A B A
31 30 eqeq1i A A B = A B A B A = A B
32 oveq1 A B A = A B A B A A B = A B A B
33 31 32 sylbi A A B = A B A B A A B = A B A B
34 26 33 syl5eq A A B = A B A = A B A B
35 1 2 cmbri A 𝐶 B A = A B A B
36 34 35 sylibr A A B = A B A 𝐶 B
37 17 36 impbii A 𝐶 B A A B = A B