Database
BASIC TOPOLOGY
Topology
Closure and interior
cmclsopn
Next ⟩
cmntrcld
Metamath Proof Explorer
Ascii
Unicode
Theorem
cmclsopn
Description:
The complement of a closure is open.
(Contributed by
NM
, 11-Sep-2006)
Ref
Expression
Hypothesis
clscld.1
⊢
X
=
⋃
J
Assertion
cmclsopn
⊢
J
∈
Top
∧
S
⊆
X
→
X
∖
cls
⁡
J
⁡
S
∈
J
Proof
Step
Hyp
Ref
Expression
1
clscld.1
⊢
X
=
⋃
J
2
1
clsval2
⊢
J
∈
Top
∧
S
⊆
X
→
cls
⁡
J
⁡
S
=
X
∖
int
⁡
J
⁡
X
∖
S
3
2
difeq2d
⊢
J
∈
Top
∧
S
⊆
X
→
X
∖
cls
⁡
J
⁡
S
=
X
∖
X
∖
int
⁡
J
⁡
X
∖
S
4
difss
⊢
X
∖
S
⊆
X
5
1
ntropn
⊢
J
∈
Top
∧
X
∖
S
⊆
X
→
int
⁡
J
⁡
X
∖
S
∈
J
6
4
5
mpan2
⊢
J
∈
Top
→
int
⁡
J
⁡
X
∖
S
∈
J
7
1
eltopss
⊢
J
∈
Top
∧
int
⁡
J
⁡
X
∖
S
∈
J
→
int
⁡
J
⁡
X
∖
S
⊆
X
8
6
7
mpdan
⊢
J
∈
Top
→
int
⁡
J
⁡
X
∖
S
⊆
X
9
dfss4
⊢
int
⁡
J
⁡
X
∖
S
⊆
X
↔
X
∖
X
∖
int
⁡
J
⁡
X
∖
S
=
int
⁡
J
⁡
X
∖
S
10
8
9
sylib
⊢
J
∈
Top
→
X
∖
X
∖
int
⁡
J
⁡
X
∖
S
=
int
⁡
J
⁡
X
∖
S
11
10
6
eqeltrd
⊢
J
∈
Top
→
X
∖
X
∖
int
⁡
J
⁡
X
∖
S
∈
J
12
11
adantr
⊢
J
∈
Top
∧
S
⊆
X
→
X
∖
X
∖
int
⁡
J
⁡
X
∖
S
∈
J
13
3
12
eqeltrd
⊢
J
∈
Top
∧
S
⊆
X
→
X
∖
cls
⁡
J
⁡
S
∈
J