Metamath Proof Explorer


Theorem cmclsopn

Description: The complement of a closure is open. (Contributed by NM, 11-Sep-2006)

Ref Expression
Hypothesis clscld.1 X = J
Assertion cmclsopn J Top S X X cls J S J

Proof

Step Hyp Ref Expression
1 clscld.1 X = J
2 1 clsval2 J Top S X cls J S = X int J X S
3 2 difeq2d J Top S X X cls J S = X X int J X S
4 difss X S X
5 1 ntropn J Top X S X int J X S J
6 4 5 mpan2 J Top int J X S J
7 1 eltopss J Top int J X S J int J X S X
8 6 7 mpdan J Top int J X S X
9 dfss4 int J X S X X X int J X S = int J X S
10 8 9 sylib J Top X X int J X S = int J X S
11 10 6 eqeltrd J Top X X int J X S J
12 11 adantr J Top S X X X int J X S J
13 3 12 eqeltrd J Top S X X cls J S J