Metamath Proof Explorer


Theorem cmcm

Description: Commutation is symmetric. Theorem 2(v) of Kalmbach p. 22. (Contributed by NM, 13-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion cmcm A C B C A 𝐶 B B 𝐶 A

Proof

Step Hyp Ref Expression
1 breq1 A = if A C A 0 A 𝐶 B if A C A 0 𝐶 B
2 breq2 A = if A C A 0 B 𝐶 A B 𝐶 if A C A 0
3 1 2 bibi12d A = if A C A 0 A 𝐶 B B 𝐶 A if A C A 0 𝐶 B B 𝐶 if A C A 0
4 breq2 B = if B C B 0 if A C A 0 𝐶 B if A C A 0 𝐶 if B C B 0
5 breq1 B = if B C B 0 B 𝐶 if A C A 0 if B C B 0 𝐶 if A C A 0
6 4 5 bibi12d B = if B C B 0 if A C A 0 𝐶 B B 𝐶 if A C A 0 if A C A 0 𝐶 if B C B 0 if B C B 0 𝐶 if A C A 0
7 h0elch 0 C
8 7 elimel if A C A 0 C
9 7 elimel if B C B 0 C
10 8 9 cmcmi if A C A 0 𝐶 if B C B 0 if B C B 0 𝐶 if A C A 0
11 3 6 10 dedth2h A C B C A 𝐶 B B 𝐶 A