Metamath Proof Explorer


Theorem cmcm3

Description: Commutation with orthocomplement. Remark in Kalmbach p. 23. (Contributed by NM, 13-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion cmcm3 A C B C A 𝐶 B A 𝐶 B

Proof

Step Hyp Ref Expression
1 breq1 A = if A C A 0 A 𝐶 B if A C A 0 𝐶 B
2 fveq2 A = if A C A 0 A = if A C A 0
3 2 breq1d A = if A C A 0 A 𝐶 B if A C A 0 𝐶 B
4 1 3 bibi12d A = if A C A 0 A 𝐶 B A 𝐶 B if A C A 0 𝐶 B if A C A 0 𝐶 B
5 breq2 B = if B C B 0 if A C A 0 𝐶 B if A C A 0 𝐶 if B C B 0
6 breq2 B = if B C B 0 if A C A 0 𝐶 B if A C A 0 𝐶 if B C B 0
7 5 6 bibi12d B = if B C B 0 if A C A 0 𝐶 B if A C A 0 𝐶 B if A C A 0 𝐶 if B C B 0 if A C A 0 𝐶 if B C B 0
8 h0elch 0 C
9 8 elimel if A C A 0 C
10 8 elimel if B C B 0 C
11 9 10 cmcm3i if A C A 0 𝐶 if B C B 0 if A C A 0 𝐶 if B C B 0
12 4 7 11 dedth2h A C B C A 𝐶 B A 𝐶 B