Metamath Proof Explorer


Theorem cmcmlem

Description: Commutation is symmetric. Theorem 3.4 of Beran p. 45. (Contributed by NM, 3-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjoml2.1 A C
pjoml2.2 B C
Assertion cmcmlem A 𝐶 B B 𝐶 A

Proof

Step Hyp Ref Expression
1 pjoml2.1 A C
2 pjoml2.2 B C
3 1 choccli A C
4 2 3 chub2i B A B
5 sseqin2 B A B A B B = B
6 4 5 mpbi A B B = B
7 6 ineq2i A B A B B = A B B
8 inass A B A B B = A B A B B
9 1 2 chdmm1i A B = A B
10 9 ineq1i A B B = A B B
11 7 8 10 3eqtr4ri A B B = A B A B B
12 1 2 chdmj4i A B = A B
13 1 2 chdmj2i A B = A B
14 12 13 oveq12i A B A B = A B A B
15 14 eqeq2i A = A B A B A = A B A B
16 15 biimpri A = A B A B A = A B A B
17 16 fveq2d A = A B A B A = A B A B
18 2 choccli B C
19 3 18 chjcli A B C
20 3 2 chjcli A B C
21 19 20 chdmj4i A B A B = A B A B
22 17 21 eqtr2di A = A B A B A B A B = A
23 22 ineq1d A = A B A B A B A B B = A B
24 11 23 syl5eq A = A B A B A B B = A B
25 24 oveq2d A = A B A B A B A B B = A B A B
26 inss2 A B B
27 1 2 chincli A B C
28 27 2 pjoml2i A B B A B A B B = B
29 26 28 ax-mp A B A B B = B
30 incom A B = B A
31 incom A B = B A
32 30 31 oveq12i A B A B = B A B A
33 25 29 32 3eqtr3g A = A B A B B = B A B A
34 1 2 cmbri A 𝐶 B A = A B A B
35 2 1 cmbri B 𝐶 A B = B A B A
36 33 34 35 3imtr4i A 𝐶 B B 𝐶 A