Metamath Proof Explorer


Theorem cmetcau

Description: The convergence of a Cauchy sequence in a complete metric space. (Contributed by NM, 19-Dec-2006) (Revised by Mario Carneiro, 14-Oct-2015)

Ref Expression
Hypothesis cmetcau.1 J = MetOpen D
Assertion cmetcau D CMet X F Cau D F dom t J

Proof

Step Hyp Ref Expression
1 cmetcau.1 J = MetOpen D
2 cmetmet D CMet X D Met X
3 metxmet D Met X D ∞Met X
4 2 3 syl D CMet X D ∞Met X
5 caun0 D ∞Met X F Cau D X
6 4 5 sylan D CMet X F Cau D X
7 n0 X x x X
8 6 7 sylib D CMet X F Cau D x x X
9 simpll D CMet X F Cau D x X D CMet X
10 simpr D CMet X F Cau D x X x X
11 simplr D CMet X F Cau D x X F Cau D
12 eqid y if y dom F F y x = y if y dom F F y x
13 1 9 10 11 12 cmetcaulem D CMet X F Cau D x X F dom t J
14 8 13 exlimddv D CMet X F Cau D F dom t J