| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cmetcau.1 |
|
| 2 |
|
cmetcau.3 |
|
| 3 |
|
cmetcau.4 |
|
| 4 |
|
cmetcau.5 |
|
| 5 |
|
cmetcau.6 |
|
| 6 |
|
cmetmet |
|
| 7 |
2 6
|
syl |
|
| 8 |
|
metxmet |
|
| 9 |
7 8
|
syl |
|
| 10 |
1
|
mopntopon |
|
| 11 |
9 10
|
syl |
|
| 12 |
|
1z |
|
| 13 |
|
nnuz |
|
| 14 |
13
|
uzfbas |
|
| 15 |
12 14
|
mp1i |
|
| 16 |
|
fgcl |
|
| 17 |
15 16
|
syl |
|
| 18 |
|
elfvdm |
|
| 19 |
2 18
|
syl |
|
| 20 |
|
cnex |
|
| 21 |
20
|
a1i |
|
| 22 |
|
caufpm |
|
| 23 |
9 4 22
|
syl2anc |
|
| 24 |
|
elpm2g |
|
| 25 |
24
|
simprbda |
|
| 26 |
19 21 23 25
|
syl21anc |
|
| 27 |
26
|
adantr |
|
| 28 |
27
|
ffvelcdmda |
|
| 29 |
3
|
ad2antrr |
|
| 30 |
28 29
|
ifclda |
|
| 31 |
30 5
|
fmptd |
|
| 32 |
|
flfval |
|
| 33 |
11 17 31 32
|
syl3anc |
|
| 34 |
|
eqid |
|
| 35 |
34
|
fmfg |
|
| 36 |
19 15 31 35
|
syl3anc |
|
| 37 |
36
|
oveq2d |
|
| 38 |
33 37
|
eqtr4d |
|
| 39 |
|
biidd |
|
| 40 |
|
1zzd |
|
| 41 |
13 9 40
|
iscau3 |
|
| 42 |
41
|
simplbda |
|
| 43 |
4 42
|
mpdan |
|
| 44 |
|
simp1 |
|
| 45 |
44
|
ralimi |
|
| 46 |
45
|
reximi |
|
| 47 |
46
|
ralimi |
|
| 48 |
43 47
|
syl |
|
| 49 |
|
1rp |
|
| 50 |
49
|
a1i |
|
| 51 |
39 48 50
|
rspcdva |
|
| 52 |
|
dfss3 |
|
| 53 |
|
nnsscn |
|
| 54 |
31 53
|
jctir |
|
| 55 |
|
elpm2r |
|
| 56 |
19 21 54 55
|
syl21anc |
|
| 57 |
56
|
adantr |
|
| 58 |
|
eqid |
|
| 59 |
9
|
adantr |
|
| 60 |
|
nnz |
|
| 61 |
60
|
ad2antrl |
|
| 62 |
|
eqidd |
|
| 63 |
|
eqidd |
|
| 64 |
58 59 61 62 63
|
iscau4 |
|
| 65 |
64
|
simplbda |
|
| 66 |
4 65
|
mpidan |
|
| 67 |
|
simprl |
|
| 68 |
|
eluznn |
|
| 69 |
67 68
|
sylan |
|
| 70 |
|
eluznn |
|
| 71 |
5 30
|
dmmptd |
|
| 72 |
71
|
adantr |
|
| 73 |
72
|
eleq2d |
|
| 74 |
73
|
biimpar |
|
| 75 |
74
|
a1d |
|
| 76 |
|
idd |
|
| 77 |
|
idd |
|
| 78 |
75 76 77
|
3anim123d |
|
| 79 |
70 78
|
sylan2 |
|
| 80 |
79
|
anassrs |
|
| 81 |
80
|
ralimdva |
|
| 82 |
69 81
|
syldan |
|
| 83 |
82
|
reximdva |
|
| 84 |
83
|
ralimdv |
|
| 85 |
66 84
|
mpd |
|
| 86 |
|
eluznn |
|
| 87 |
67 86
|
sylan |
|
| 88 |
|
simprr |
|
| 89 |
88
|
sselda |
|
| 90 |
|
iftrue |
|
| 91 |
90
|
adantl |
|
| 92 |
|
fvex |
|
| 93 |
91 92
|
eqeltrdi |
|
| 94 |
|
eleq1w |
|
| 95 |
|
fveq2 |
|
| 96 |
94 95
|
ifbieq1d |
|
| 97 |
96 5
|
fvmptg |
|
| 98 |
93 97
|
syldan |
|
| 99 |
98 91
|
eqtrd |
|
| 100 |
87 89 99
|
syl2anc |
|
| 101 |
88
|
sselda |
|
| 102 |
69 101
|
elind |
|
| 103 |
|
fveq2 |
|
| 104 |
|
fveq2 |
|
| 105 |
103 104
|
eqeq12d |
|
| 106 |
|
elin |
|
| 107 |
106 99
|
sylbi |
|
| 108 |
105 107
|
vtoclga |
|
| 109 |
102 108
|
syl |
|
| 110 |
58 59 61 100 109
|
iscau4 |
|
| 111 |
57 85 110
|
mpbir2and |
|
| 112 |
111
|
expr |
|
| 113 |
52 112
|
biimtrrid |
|
| 114 |
113
|
rexlimdva |
|
| 115 |
51 114
|
mpd |
|
| 116 |
|
eqid |
|
| 117 |
13 116
|
caucfil |
|
| 118 |
9 40 31 117
|
syl3anc |
|
| 119 |
115 118
|
mpbid |
|
| 120 |
1
|
cmetcvg |
|
| 121 |
2 119 120
|
syl2anc |
|
| 122 |
38 121
|
eqnetrd |
|
| 123 |
|
n0 |
|
| 124 |
122 123
|
sylib |
|
| 125 |
13 34
|
lmflf |
|
| 126 |
11 40 31 125
|
syl3anc |
|
| 127 |
23
|
adantr |
|
| 128 |
|
lmcl |
|
| 129 |
11 128
|
sylan |
|
| 130 |
1 9 13 40
|
lmmbr3 |
|
| 131 |
130
|
biimpa |
|
| 132 |
131
|
simp3d |
|
| 133 |
|
r19.26 |
|
| 134 |
13
|
rexanuz2 |
|
| 135 |
|
simprl |
|
| 136 |
99
|
ad2ant2lr |
|
| 137 |
|
simprr2 |
|
| 138 |
136 137
|
eqeltrrd |
|
| 139 |
136
|
oveq1d |
|
| 140 |
|
simprr3 |
|
| 141 |
139 140
|
eqbrtrrd |
|
| 142 |
135 138 141
|
3jca |
|
| 143 |
142
|
ex |
|
| 144 |
86 143
|
sylan2 |
|
| 145 |
144
|
anassrs |
|
| 146 |
145
|
ralimdva |
|
| 147 |
146
|
reximdva |
|
| 148 |
134 147
|
biimtrrid |
|
| 149 |
148
|
ralimdv |
|
| 150 |
133 149
|
biimtrrid |
|
| 151 |
48 150
|
mpand |
|
| 152 |
151
|
adantr |
|
| 153 |
132 152
|
mpd |
|
| 154 |
9
|
adantr |
|
| 155 |
|
1zzd |
|
| 156 |
1 154 13 155
|
lmmbr3 |
|
| 157 |
127 129 153 156
|
mpbir3and |
|
| 158 |
|
lmrel |
|
| 159 |
158
|
releldmi |
|
| 160 |
157 159
|
syl |
|
| 161 |
160
|
ex |
|
| 162 |
126 161
|
sylbird |
|
| 163 |
162
|
exlimdv |
|
| 164 |
124 163
|
mpd |
|