Metamath Proof Explorer


Theorem cmetcvg

Description: The convergence of a Cauchy filter in a complete metric space. (Contributed by Mario Carneiro, 14-Oct-2015)

Ref Expression
Hypothesis iscmet.1 J = MetOpen D
Assertion cmetcvg D CMet X F CauFil D J fLim F

Proof

Step Hyp Ref Expression
1 iscmet.1 J = MetOpen D
2 1 iscmet D CMet X D Met X f CauFil D J fLim f
3 2 simprbi D CMet X f CauFil D J fLim f
4 oveq2 f = F J fLim f = J fLim F
5 4 neeq1d f = F J fLim f J fLim F
6 5 rspccva f CauFil D J fLim f F CauFil D J fLim F
7 3 6 sylan D CMet X F CauFil D J fLim F