Metamath Proof Explorer


Theorem cmetmet

Description: A complete metric space is a metric space. (Contributed by NM, 18-Dec-2006) (Revised by Mario Carneiro, 29-Jan-2014)

Ref Expression
Assertion cmetmet D CMet X D Met X

Proof

Step Hyp Ref Expression
1 eqid MetOpen D = MetOpen D
2 1 iscmet D CMet X D Met X f CauFil D MetOpen D fLim f
3 2 simplbi D CMet X D Met X