Metamath Proof Explorer


Theorem cmmbl

Description: The complement of a measurable set is measurable. (Contributed by Mario Carneiro, 18-Mar-2014)

Ref Expression
Assertion cmmbl A dom vol A dom vol

Proof

Step Hyp Ref Expression
1 difssd A dom vol A
2 elpwi x 𝒫 x
3 inss1 x A x
4 ovolsscl x A x x vol * x vol * x A
5 3 4 mp3an1 x vol * x vol * x A
6 5 3adant1 A dom vol x vol * x vol * x A
7 6 recnd A dom vol x vol * x vol * x A
8 difss x A x
9 ovolsscl x A x x vol * x vol * x A
10 8 9 mp3an1 x vol * x vol * x A
11 10 3adant1 A dom vol x vol * x vol * x A
12 11 recnd A dom vol x vol * x vol * x A
13 7 12 addcomd A dom vol x vol * x vol * x A + vol * x A = vol * x A + vol * x A
14 mblsplit A dom vol x vol * x vol * x = vol * x A + vol * x A
15 indifcom x A = x A
16 simp2 A dom vol x vol * x x
17 16 ssdifssd A dom vol x vol * x x A
18 sseqin2 x A x A = x A
19 17 18 sylib A dom vol x vol * x x A = x A
20 15 19 eqtr3id A dom vol x vol * x x A = x A
21 20 fveq2d A dom vol x vol * x vol * x A = vol * x A
22 difin x x A = x A
23 20 difeq2d A dom vol x vol * x x x A = x x A
24 22 23 eqtr3id A dom vol x vol * x x A = x x A
25 dfin4 x A = x x A
26 24 25 eqtr4di A dom vol x vol * x x A = x A
27 26 fveq2d A dom vol x vol * x vol * x A = vol * x A
28 21 27 oveq12d A dom vol x vol * x vol * x A + vol * x A = vol * x A + vol * x A
29 13 14 28 3eqtr4d A dom vol x vol * x vol * x = vol * x A + vol * x A
30 29 3expia A dom vol x vol * x vol * x = vol * x A + vol * x A
31 2 30 sylan2 A dom vol x 𝒫 vol * x vol * x = vol * x A + vol * x A
32 31 ralrimiva A dom vol x 𝒫 vol * x vol * x = vol * x A + vol * x A
33 ismbl A dom vol A x 𝒫 vol * x vol * x = vol * x A + vol * x A
34 1 32 33 sylanbrc A dom vol A dom vol