Metamath Proof Explorer


Theorem cmn32

Description: Commutative/associative law for Abelian groups. (Contributed by NM, 4-Feb-2014) (Revised by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses ablcom.b B = Base G
ablcom.p + ˙ = + G
Assertion cmn32 G CMnd X B Y B Z B X + ˙ Y + ˙ Z = X + ˙ Z + ˙ Y

Proof

Step Hyp Ref Expression
1 ablcom.b B = Base G
2 ablcom.p + ˙ = + G
3 cmnmnd G CMnd G Mnd
4 3 adantr G CMnd X B Y B Z B G Mnd
5 simpr1 G CMnd X B Y B Z B X B
6 simpr2 G CMnd X B Y B Z B Y B
7 simpr3 G CMnd X B Y B Z B Z B
8 1 2 cmncom G CMnd Y B Z B Y + ˙ Z = Z + ˙ Y
9 8 3adant3r1 G CMnd X B Y B Z B Y + ˙ Z = Z + ˙ Y
10 1 2 4 5 6 7 9 mnd32g G CMnd X B Y B Z B X + ˙ Y + ˙ Z = X + ˙ Z + ˙ Y