Metamath Proof Explorer
Description: Commutative/associative law for commutative monoids. (Contributed by Thierry Arnoux, 4-May-2025)
|
|
Ref |
Expression |
|
Hypotheses |
cmn4d.1 |
|
|
|
cmn4d.2 |
|
|
|
cmn4d.3 |
|
|
|
cmn4d.4 |
|
|
|
cmn4d.5 |
|
|
|
cmn4d.6 |
|
|
|
cmn4d.7 |
|
|
Assertion |
cmn4d |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
cmn4d.1 |
|
2 |
|
cmn4d.2 |
|
3 |
|
cmn4d.3 |
|
4 |
|
cmn4d.4 |
|
5 |
|
cmn4d.5 |
|
6 |
|
cmn4d.6 |
|
7 |
|
cmn4d.7 |
|
8 |
1 2
|
cmn4 |
|
9 |
3 4 5 6 7 8
|
syl122anc |
|