Database
BASIC ALGEBRAIC STRUCTURES
Groups
Abelian groups
Definition and basic properties
cmnbascntr
Next ⟩
rinvmod
Metamath Proof Explorer
Ascii
Unicode
Theorem
cmnbascntr
Description:
The base set of a commutative monoid is its center.
(Contributed by
SN
, 21-Mar-2025)
Ref
Expression
Hypotheses
cmnbascntr.b
⊢
B
=
Base
G
cmnbascntr.z
⊢
Z
=
Cntr
⁡
G
Assertion
cmnbascntr
⊢
G
∈
CMnd
→
B
=
Z
Proof
Step
Hyp
Ref
Expression
1
cmnbascntr.b
⊢
B
=
Base
G
2
cmnbascntr.z
⊢
Z
=
Cntr
⁡
G
3
eqid
⊢
Cntz
⁡
G
=
Cntz
⁡
G
4
1
3
cntrval
⊢
Cntz
⁡
G
⁡
B
=
Cntr
⁡
G
5
ssid
⊢
B
⊆
B
6
eqid
⊢
+
G
=
+
G
7
1
6
3
cntzval
⊢
B
⊆
B
→
Cntz
⁡
G
⁡
B
=
x
∈
B
|
∀
y
∈
B
x
+
G
y
=
y
+
G
x
8
5
7
ax-mp
⊢
Cntz
⁡
G
⁡
B
=
x
∈
B
|
∀
y
∈
B
x
+
G
y
=
y
+
G
x
9
2
4
8
3eqtr2i
⊢
Z
=
x
∈
B
|
∀
y
∈
B
x
+
G
y
=
y
+
G
x
10
1
6
cmncom
⊢
G
∈
CMnd
∧
x
∈
B
∧
y
∈
B
→
x
+
G
y
=
y
+
G
x
11
10
3expa
⊢
G
∈
CMnd
∧
x
∈
B
∧
y
∈
B
→
x
+
G
y
=
y
+
G
x
12
11
ralrimiva
⊢
G
∈
CMnd
∧
x
∈
B
→
∀
y
∈
B
x
+
G
y
=
y
+
G
x
13
12
rabeqcda
⊢
G
∈
CMnd
→
x
∈
B
|
∀
y
∈
B
x
+
G
y
=
y
+
G
x
=
B
14
9
13
eqtr2id
⊢
G
∈
CMnd
→
B
=
Z