Metamath Proof Explorer


Theorem cmnbascntr

Description: The base set of a commutative monoid is its center. (Contributed by SN, 21-Mar-2025)

Ref Expression
Hypotheses cmnbascntr.b B = Base G
cmnbascntr.z Z = Cntr G
Assertion cmnbascntr G CMnd B = Z

Proof

Step Hyp Ref Expression
1 cmnbascntr.b B = Base G
2 cmnbascntr.z Z = Cntr G
3 eqid Cntz G = Cntz G
4 1 3 cntrval Cntz G B = Cntr G
5 ssid B B
6 eqid + G = + G
7 1 6 3 cntzval B B Cntz G B = x B | y B x + G y = y + G x
8 5 7 ax-mp Cntz G B = x B | y B x + G y = y + G x
9 2 4 8 3eqtr2i Z = x B | y B x + G y = y + G x
10 1 6 cmncom G CMnd x B y B x + G y = y + G x
11 10 3expa G CMnd x B y B x + G y = y + G x
12 11 ralrimiva G CMnd x B y B x + G y = y + G x
13 12 rabeqcda G CMnd x B | y B x + G y = y + G x = B
14 9 13 eqtr2id G CMnd B = Z