Database
BASIC ALGEBRAIC STRUCTURES
Groups
Abelian groups
Definition and basic properties
cmncom
Next ⟩
ablcom
Metamath Proof Explorer
Ascii
Unicode
Theorem
cmncom
Description:
A commutative monoid is commutative.
(Contributed by
Mario Carneiro
, 6-Jan-2015)
Ref
Expression
Hypotheses
ablcom.b
⊢
B
=
Base
G
ablcom.p
⊢
+
˙
=
+
G
Assertion
cmncom
⊢
G
∈
CMnd
∧
X
∈
B
∧
Y
∈
B
→
X
+
˙
Y
=
Y
+
˙
X
Proof
Step
Hyp
Ref
Expression
1
ablcom.b
⊢
B
=
Base
G
2
ablcom.p
⊢
+
˙
=
+
G
3
1
2
iscmn
⊢
G
∈
CMnd
↔
G
∈
Mnd
∧
∀
x
∈
B
∀
y
∈
B
x
+
˙
y
=
y
+
˙
x
4
3
simprbi
⊢
G
∈
CMnd
→
∀
x
∈
B
∀
y
∈
B
x
+
˙
y
=
y
+
˙
x
5
rsp2
⊢
∀
x
∈
B
∀
y
∈
B
x
+
˙
y
=
y
+
˙
x
→
x
∈
B
∧
y
∈
B
→
x
+
˙
y
=
y
+
˙
x
6
5
imp
⊢
∀
x
∈
B
∀
y
∈
B
x
+
˙
y
=
y
+
˙
x
∧
x
∈
B
∧
y
∈
B
→
x
+
˙
y
=
y
+
˙
x
7
4
6
sylan
⊢
G
∈
CMnd
∧
x
∈
B
∧
y
∈
B
→
x
+
˙
y
=
y
+
˙
x
8
7
caovcomg
⊢
G
∈
CMnd
∧
X
∈
B
∧
Y
∈
B
→
X
+
˙
Y
=
Y
+
˙
X
9
8
3impb
⊢
G
∈
CMnd
∧
X
∈
B
∧
Y
∈
B
→
X
+
˙
Y
=
Y
+
˙
X