Metamath Proof Explorer


Theorem cmntrcld

Description: The complement of an interior is closed. (Contributed by NM, 1-Oct-2007) (Proof shortened by OpenAI, 3-Jul-2020)

Ref Expression
Hypothesis clscld.1 X = J
Assertion cmntrcld J Top S X X int J S Clsd J

Proof

Step Hyp Ref Expression
1 clscld.1 X = J
2 1 ntropn J Top S X int J S J
3 1 opncld J Top int J S J X int J S Clsd J
4 2 3 syldan J Top S X X int J S Clsd J