Metamath Proof Explorer


Theorem cmodscexp

Description: The powers of _i belong to the scalar subring of a subcomplex module if _i belongs to the scalar subring . (Contributed by AV, 18-Oct-2021)

Ref Expression
Hypotheses cmodscexp.f F = Scalar W
cmodscexp.k K = Base F
Assertion cmodscexp W CMod i K N i N K

Proof

Step Hyp Ref Expression
1 cmodscexp.f F = Scalar W
2 cmodscexp.k K = Base F
3 ax-icn i
4 3 a1i W CMod i K i
5 nnnn0 N N 0
6 cnfldexp i N 0 N mulGrp fld i = i N
7 4 5 6 syl2an W CMod i K N N mulGrp fld i = i N
8 1 2 clmsubrg W CMod K SubRing fld
9 eqid mulGrp fld = mulGrp fld
10 9 subrgsubm K SubRing fld K SubMnd mulGrp fld
11 8 10 syl W CMod K SubMnd mulGrp fld
12 11 ad2antrr W CMod i K N K SubMnd mulGrp fld
13 5 adantl W CMod i K N N 0
14 simplr W CMod i K N i K
15 eqid mulGrp fld = mulGrp fld
16 15 submmulgcl K SubMnd mulGrp fld N 0 i K N mulGrp fld i K
17 12 13 14 16 syl3anc W CMod i K N N mulGrp fld i K
18 7 17 eqeltrrd W CMod i K N i N K