Metamath Proof Explorer


Theorem cmodscmulexp

Description: The scalar product of a vector with powers of _i belongs to the base set of a subcomplex module if the scalar subring of th subcomplex module contains _i . (Contributed by AV, 18-Oct-2021)

Ref Expression
Hypotheses cmodscexp.f F = Scalar W
cmodscexp.k K = Base F
cmodscmulexp.x X = Base W
cmodscmulexp.s · ˙ = W
Assertion cmodscmulexp W CMod i K B X N i N · ˙ B X

Proof

Step Hyp Ref Expression
1 cmodscexp.f F = Scalar W
2 cmodscexp.k K = Base F
3 cmodscmulexp.x X = Base W
4 cmodscmulexp.s · ˙ = W
5 clmlmod W CMod W LMod
6 5 adantr W CMod i K B X N W LMod
7 simp1 i K B X N i K
8 7 anim2i W CMod i K B X N W CMod i K
9 simpr3 W CMod i K B X N N
10 1 2 cmodscexp W CMod i K N i N K
11 8 9 10 syl2anc W CMod i K B X N i N K
12 simpr2 W CMod i K B X N B X
13 3 1 4 2 lmodvscl W LMod i N K B X i N · ˙ B X
14 6 11 12 13 syl3anc W CMod i K B X N i N · ˙ B X