Step |
Hyp |
Ref |
Expression |
1 |
|
velpw |
|
2 |
|
simp1l |
|
3 |
|
simp2 |
|
4 |
|
eqid |
|
5 |
4
|
cldopn |
|
6 |
5
|
adantl |
|
7 |
6
|
3ad2ant1 |
|
8 |
7
|
snssd |
|
9 |
3 8
|
unssd |
|
10 |
|
simp3 |
|
11 |
|
uniss |
|
12 |
11
|
3ad2ant2 |
|
13 |
10 12
|
sstrd |
|
14 |
|
undif |
|
15 |
13 14
|
sylib |
|
16 |
|
unss1 |
|
17 |
16
|
3ad2ant3 |
|
18 |
15 17
|
eqsstrrd |
|
19 |
|
difss |
|
20 |
|
unss |
|
21 |
12 19 20
|
sylanblc |
|
22 |
18 21
|
eqssd |
|
23 |
|
uniexg |
|
24 |
23
|
ad2antrr |
|
25 |
24
|
3adant3 |
|
26 |
|
difexg |
|
27 |
|
unisng |
|
28 |
25 26 27
|
3syl |
|
29 |
28
|
uneq2d |
|
30 |
22 29
|
eqtr4d |
|
31 |
|
uniun |
|
32 |
30 31
|
eqtr4di |
|
33 |
4
|
cmpcov |
|
34 |
2 9 32 33
|
syl3anc |
|
35 |
|
elfpw |
|
36 |
|
simp2l |
|
37 |
|
uncom |
|
38 |
36 37
|
sseqtrdi |
|
39 |
|
ssundif |
|
40 |
38 39
|
sylib |
|
41 |
|
diffi |
|
42 |
41
|
ad2antll |
|
43 |
42
|
3adant3 |
|
44 |
|
elfpw |
|
45 |
40 43 44
|
sylanbrc |
|
46 |
10
|
3ad2ant1 |
|
47 |
12
|
3ad2ant1 |
|
48 |
|
simp3 |
|
49 |
47 48
|
sseqtrd |
|
50 |
46 49
|
sstrd |
|
51 |
50
|
sselda |
|
52 |
|
eluni |
|
53 |
51 52
|
sylib |
|
54 |
|
simpl |
|
55 |
54
|
a1i |
|
56 |
|
simpr |
|
57 |
56
|
a1i |
|
58 |
|
elndif |
|
59 |
58
|
ad2antlr |
|
60 |
|
eleq2 |
|
61 |
60
|
biimpd |
|
62 |
61
|
a1i |
|
63 |
62
|
com23 |
|
64 |
63
|
imp |
|
65 |
59 64
|
mtod |
|
66 |
65
|
ex |
|
67 |
66
|
adantrd |
|
68 |
|
velsn |
|
69 |
68
|
notbii |
|
70 |
67 69
|
syl6ibr |
|
71 |
57 70
|
jcad |
|
72 |
|
eldif |
|
73 |
71 72
|
syl6ibr |
|
74 |
55 73
|
jcad |
|
75 |
74
|
eximdv |
|
76 |
53 75
|
mpd |
|
77 |
76
|
ex |
|
78 |
|
eluni |
|
79 |
77 78
|
syl6ibr |
|
80 |
79
|
ssrdv |
|
81 |
|
unieq |
|
82 |
81
|
sseq2d |
|
83 |
82
|
rspcev |
|
84 |
45 80 83
|
syl2anc |
|
85 |
35 84
|
syl3an2b |
|
86 |
85
|
rexlimdv3a |
|
87 |
34 86
|
mpd |
|
88 |
87
|
3exp |
|
89 |
1 88
|
syl5bi |
|
90 |
89
|
ralrimiv |
|
91 |
|
cmptop |
|
92 |
4
|
cldss |
|
93 |
4
|
cmpsub |
|
94 |
91 92 93
|
syl2an |
|
95 |
90 94
|
mpbird |
|