Metamath Proof Explorer


Theorem cmpcov

Description: An open cover of a compact topology has a finite subcover. (Contributed by Jeff Hankins, 29-Jun-2009)

Ref Expression
Hypothesis iscmp.1 X = J
Assertion cmpcov J Comp S J X = S s 𝒫 S Fin X = s

Proof

Step Hyp Ref Expression
1 iscmp.1 X = J
2 unieq r = S r = S
3 2 eqeq2d r = S X = r X = S
4 pweq r = S 𝒫 r = 𝒫 S
5 4 ineq1d r = S 𝒫 r Fin = 𝒫 S Fin
6 5 rexeqdv r = S s 𝒫 r Fin X = s s 𝒫 S Fin X = s
7 3 6 imbi12d r = S X = r s 𝒫 r Fin X = s X = S s 𝒫 S Fin X = s
8 1 iscmp J Comp J Top r 𝒫 J X = r s 𝒫 r Fin X = s
9 8 simprbi J Comp r 𝒫 J X = r s 𝒫 r Fin X = s
10 9 adantr J Comp S J r 𝒫 J X = r s 𝒫 r Fin X = s
11 ssexg S J J Comp S V
12 11 ancoms J Comp S J S V
13 simpr J Comp S J S J
14 12 13 elpwd J Comp S J S 𝒫 J
15 7 10 14 rspcdva J Comp S J X = S s 𝒫 S Fin X = s
16 15 3impia J Comp S J X = S s 𝒫 S Fin X = s