Metamath Proof Explorer


Theorem cmpcovf

Description: Combine cmpcov with ac6sfi to show the existence of a function that indexes the elements that are generating the open cover. (Contributed by Mario Carneiro, 14-Sep-2014)

Ref Expression
Hypotheses iscmp.1 X = J
cmpcovf.2 z = f y φ ψ
Assertion cmpcovf J Comp x X y J x y z A φ s 𝒫 J Fin X = s f f : s A y s ψ

Proof

Step Hyp Ref Expression
1 iscmp.1 X = J
2 cmpcovf.2 z = f y φ ψ
3 simpl J Comp x X y J x y z A φ J Comp
4 1 cmpcov2 J Comp x X y J x y z A φ u 𝒫 J Fin X = u y u z A φ
5 elfpw u 𝒫 J Fin u J u Fin
6 simplrl J Comp u J u Fin X = u y u z A φ u J
7 velpw u 𝒫 J u J
8 6 7 sylibr J Comp u J u Fin X = u y u z A φ u 𝒫 J
9 simplrr J Comp u J u Fin X = u y u z A φ u Fin
10 8 9 elind J Comp u J u Fin X = u y u z A φ u 𝒫 J Fin
11 simprl J Comp u J u Fin X = u y u z A φ X = u
12 simprr J Comp u J u Fin X = u y u z A φ y u z A φ
13 2 ac6sfi u Fin y u z A φ f f : u A y u ψ
14 9 12 13 syl2anc J Comp u J u Fin X = u y u z A φ f f : u A y u ψ
15 unieq s = u s = u
16 15 eqeq2d s = u X = s X = u
17 feq2 s = u f : s A f : u A
18 raleq s = u y s ψ y u ψ
19 17 18 anbi12d s = u f : s A y s ψ f : u A y u ψ
20 19 exbidv s = u f f : s A y s ψ f f : u A y u ψ
21 16 20 anbi12d s = u X = s f f : s A y s ψ X = u f f : u A y u ψ
22 21 rspcev u 𝒫 J Fin X = u f f : u A y u ψ s 𝒫 J Fin X = s f f : s A y s ψ
23 10 11 14 22 syl12anc J Comp u J u Fin X = u y u z A φ s 𝒫 J Fin X = s f f : s A y s ψ
24 23 ex J Comp u J u Fin X = u y u z A φ s 𝒫 J Fin X = s f f : s A y s ψ
25 5 24 sylan2b J Comp u 𝒫 J Fin X = u y u z A φ s 𝒫 J Fin X = s f f : s A y s ψ
26 25 rexlimdva J Comp u 𝒫 J Fin X = u y u z A φ s 𝒫 J Fin X = s f f : s A y s ψ
27 3 4 26 sylc J Comp x X y J x y z A φ s 𝒫 J Fin X = s f f : s A y s ψ