Metamath Proof Explorer


Theorem cmpfii

Description: In a compact topology, a system of closed sets with nonempty finite intersections has a nonempty intersection. (Contributed by Stefan O'Rear, 22-Feb-2015)

Ref Expression
Assertion cmpfii J Comp X Clsd J ¬ fi X X

Proof

Step Hyp Ref Expression
1 fvex Clsd J V
2 1 elpw2 X 𝒫 Clsd J X Clsd J
3 2 biimpri X Clsd J X 𝒫 Clsd J
4 cmptop J Comp J Top
5 cmpfi J Top J Comp x 𝒫 Clsd J ¬ fi x x
6 4 5 syl J Comp J Comp x 𝒫 Clsd J ¬ fi x x
7 6 ibi J Comp x 𝒫 Clsd J ¬ fi x x
8 fveq2 x = X fi x = fi X
9 8 eleq2d x = X fi x fi X
10 9 notbid x = X ¬ fi x ¬ fi X
11 inteq x = X x = X
12 11 neeq1d x = X x X
13 10 12 imbi12d x = X ¬ fi x x ¬ fi X X
14 13 rspcva X 𝒫 Clsd J x 𝒫 Clsd J ¬ fi x x ¬ fi X X
15 3 7 14 syl2anr J Comp X Clsd J ¬ fi X X
16 15 3impia J Comp X Clsd J ¬ fi X X