Metamath Proof Explorer


Theorem cmpfiiin

Description: In a compact topology, a system of closed sets with nonempty finite intersections has a nonempty intersection. (Contributed by Stefan O'Rear, 22-Feb-2015)

Ref Expression
Hypotheses cmpfiiin.x X = J
cmpfiiin.j φ J Comp
cmpfiiin.s φ k I S Clsd J
cmpfiiin.z φ l I l Fin X k l S
Assertion cmpfiiin φ X k I S

Proof

Step Hyp Ref Expression
1 cmpfiiin.x X = J
2 cmpfiiin.j φ J Comp
3 cmpfiiin.s φ k I S Clsd J
4 cmpfiiin.z φ l I l Fin X k l S
5 cmptop J Comp J Top
6 2 5 syl φ J Top
7 1 topcld J Top X Clsd J
8 6 7 syl φ X Clsd J
9 1 cldss S Clsd J S X
10 3 9 syl φ k I S X
11 10 ralrimiva φ k I S X
12 riinint X Clsd J k I S X X k I S = X ran k I S
13 8 11 12 syl2anc φ X k I S = X ran k I S
14 8 snssd φ X Clsd J
15 3 fmpttd φ k I S : I Clsd J
16 15 frnd φ ran k I S Clsd J
17 14 16 unssd φ X ran k I S Clsd J
18 elin l 𝒫 I Fin l 𝒫 I l Fin
19 elpwi l 𝒫 I l I
20 19 anim1i l 𝒫 I l Fin l I l Fin
21 18 20 sylbi l 𝒫 I Fin l I l Fin
22 nesym X k l S ¬ = X k l S
23 4 22 sylib φ l I l Fin ¬ = X k l S
24 21 23 sylan2 φ l 𝒫 I Fin ¬ = X k l S
25 24 nrexdv φ ¬ l 𝒫 I Fin = X k l S
26 elrfirn2 X Clsd J k I S X fi X ran k I S l 𝒫 I Fin = X k l S
27 8 11 26 syl2anc φ fi X ran k I S l 𝒫 I Fin = X k l S
28 25 27 mtbird φ ¬ fi X ran k I S
29 cmpfii J Comp X ran k I S Clsd J ¬ fi X ran k I S X ran k I S
30 2 17 28 29 syl3anc φ X ran k I S
31 13 30 eqnetrd φ X k I S