Step |
Hyp |
Ref |
Expression |
1 |
|
cmphaushmeo.1 |
|
2 |
|
cmphaushmeo.2 |
|
3 |
1 2
|
hmeof1o |
|
4 |
|
f1ocnv |
|
5 |
|
f1of |
|
6 |
4 5
|
syl |
|
7 |
6
|
a1i |
|
8 |
|
f1orel |
|
9 |
8
|
ad2antll |
|
10 |
|
dfrel2 |
|
11 |
9 10
|
sylib |
|
12 |
11
|
imaeq1d |
|
13 |
|
simp2 |
|
14 |
13
|
adantr |
|
15 |
|
imassrn |
|
16 |
|
f1ofo |
|
17 |
16
|
ad2antll |
|
18 |
|
forn |
|
19 |
17 18
|
syl |
|
20 |
15 19
|
sseqtrid |
|
21 |
|
simpl3 |
|
22 |
|
simp1 |
|
23 |
22
|
adantr |
|
24 |
|
simprl |
|
25 |
|
cmpcld |
|
26 |
23 24 25
|
syl2anc |
|
27 |
|
imacmp |
|
28 |
21 26 27
|
syl2anc |
|
29 |
2
|
hauscmp |
|
30 |
14 20 28 29
|
syl3anc |
|
31 |
12 30
|
eqeltrd |
|
32 |
31
|
expr |
|
33 |
32
|
ralrimdva |
|
34 |
7 33
|
jcad |
|
35 |
|
haustop |
|
36 |
13 35
|
syl |
|
37 |
2
|
toptopon |
|
38 |
36 37
|
sylib |
|
39 |
|
cmptop |
|
40 |
22 39
|
syl |
|
41 |
1
|
toptopon |
|
42 |
40 41
|
sylib |
|
43 |
|
iscncl |
|
44 |
38 42 43
|
syl2anc |
|
45 |
34 44
|
sylibrd |
|
46 |
|
simp3 |
|
47 |
45 46
|
jctild |
|
48 |
|
ishmeo |
|
49 |
47 48
|
syl6ibr |
|
50 |
3 49
|
impbid2 |
|