Metamath Proof Explorer


Theorem cmphaushmeo

Description: A continuous bijection from a compact space to a Hausdorff space is a homeomorphism. (Contributed by Mario Carneiro, 17-Feb-2015)

Ref Expression
Hypotheses cmphaushmeo.1 X = J
cmphaushmeo.2 Y = K
Assertion cmphaushmeo J Comp K Haus F J Cn K F J Homeo K F : X 1-1 onto Y

Proof

Step Hyp Ref Expression
1 cmphaushmeo.1 X = J
2 cmphaushmeo.2 Y = K
3 1 2 hmeof1o F J Homeo K F : X 1-1 onto Y
4 f1ocnv F : X 1-1 onto Y F -1 : Y 1-1 onto X
5 f1of F -1 : Y 1-1 onto X F -1 : Y X
6 4 5 syl F : X 1-1 onto Y F -1 : Y X
7 6 a1i J Comp K Haus F J Cn K F : X 1-1 onto Y F -1 : Y X
8 f1orel F : X 1-1 onto Y Rel F
9 8 ad2antll J Comp K Haus F J Cn K x Clsd J F : X 1-1 onto Y Rel F
10 dfrel2 Rel F F -1 -1 = F
11 9 10 sylib J Comp K Haus F J Cn K x Clsd J F : X 1-1 onto Y F -1 -1 = F
12 11 imaeq1d J Comp K Haus F J Cn K x Clsd J F : X 1-1 onto Y F -1 -1 x = F x
13 simp2 J Comp K Haus F J Cn K K Haus
14 13 adantr J Comp K Haus F J Cn K x Clsd J F : X 1-1 onto Y K Haus
15 imassrn F x ran F
16 f1ofo F : X 1-1 onto Y F : X onto Y
17 16 ad2antll J Comp K Haus F J Cn K x Clsd J F : X 1-1 onto Y F : X onto Y
18 forn F : X onto Y ran F = Y
19 17 18 syl J Comp K Haus F J Cn K x Clsd J F : X 1-1 onto Y ran F = Y
20 15 19 sseqtrid J Comp K Haus F J Cn K x Clsd J F : X 1-1 onto Y F x Y
21 simpl3 J Comp K Haus F J Cn K x Clsd J F : X 1-1 onto Y F J Cn K
22 simp1 J Comp K Haus F J Cn K J Comp
23 22 adantr J Comp K Haus F J Cn K x Clsd J F : X 1-1 onto Y J Comp
24 simprl J Comp K Haus F J Cn K x Clsd J F : X 1-1 onto Y x Clsd J
25 cmpcld J Comp x Clsd J J 𝑡 x Comp
26 23 24 25 syl2anc J Comp K Haus F J Cn K x Clsd J F : X 1-1 onto Y J 𝑡 x Comp
27 imacmp F J Cn K J 𝑡 x Comp K 𝑡 F x Comp
28 21 26 27 syl2anc J Comp K Haus F J Cn K x Clsd J F : X 1-1 onto Y K 𝑡 F x Comp
29 2 hauscmp K Haus F x Y K 𝑡 F x Comp F x Clsd K
30 14 20 28 29 syl3anc J Comp K Haus F J Cn K x Clsd J F : X 1-1 onto Y F x Clsd K
31 12 30 eqeltrd J Comp K Haus F J Cn K x Clsd J F : X 1-1 onto Y F -1 -1 x Clsd K
32 31 expr J Comp K Haus F J Cn K x Clsd J F : X 1-1 onto Y F -1 -1 x Clsd K
33 32 ralrimdva J Comp K Haus F J Cn K F : X 1-1 onto Y x Clsd J F -1 -1 x Clsd K
34 7 33 jcad J Comp K Haus F J Cn K F : X 1-1 onto Y F -1 : Y X x Clsd J F -1 -1 x Clsd K
35 haustop K Haus K Top
36 13 35 syl J Comp K Haus F J Cn K K Top
37 2 toptopon K Top K TopOn Y
38 36 37 sylib J Comp K Haus F J Cn K K TopOn Y
39 cmptop J Comp J Top
40 22 39 syl J Comp K Haus F J Cn K J Top
41 1 toptopon J Top J TopOn X
42 40 41 sylib J Comp K Haus F J Cn K J TopOn X
43 iscncl K TopOn Y J TopOn X F -1 K Cn J F -1 : Y X x Clsd J F -1 -1 x Clsd K
44 38 42 43 syl2anc J Comp K Haus F J Cn K F -1 K Cn J F -1 : Y X x Clsd J F -1 -1 x Clsd K
45 34 44 sylibrd J Comp K Haus F J Cn K F : X 1-1 onto Y F -1 K Cn J
46 simp3 J Comp K Haus F J Cn K F J Cn K
47 45 46 jctild J Comp K Haus F J Cn K F : X 1-1 onto Y F J Cn K F -1 K Cn J
48 ishmeo F J Homeo K F J Cn K F -1 K Cn J
49 47 48 syl6ibr J Comp K Haus F J Cn K F : X 1-1 onto Y F J Homeo K
50 3 49 impbid2 J Comp K Haus F J Cn K F J Homeo K F : X 1-1 onto Y