| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cmphaushmeo.1 |
|
| 2 |
|
cmphaushmeo.2 |
|
| 3 |
1 2
|
hmeof1o |
|
| 4 |
|
f1ocnv |
|
| 5 |
|
f1of |
|
| 6 |
4 5
|
syl |
|
| 7 |
6
|
a1i |
|
| 8 |
|
f1orel |
|
| 9 |
8
|
ad2antll |
|
| 10 |
|
dfrel2 |
|
| 11 |
9 10
|
sylib |
|
| 12 |
11
|
imaeq1d |
|
| 13 |
|
simp2 |
|
| 14 |
13
|
adantr |
|
| 15 |
|
imassrn |
|
| 16 |
|
f1ofo |
|
| 17 |
16
|
ad2antll |
|
| 18 |
|
forn |
|
| 19 |
17 18
|
syl |
|
| 20 |
15 19
|
sseqtrid |
|
| 21 |
|
simpl3 |
|
| 22 |
|
simp1 |
|
| 23 |
22
|
adantr |
|
| 24 |
|
simprl |
|
| 25 |
|
cmpcld |
|
| 26 |
23 24 25
|
syl2anc |
|
| 27 |
|
imacmp |
|
| 28 |
21 26 27
|
syl2anc |
|
| 29 |
2
|
hauscmp |
|
| 30 |
14 20 28 29
|
syl3anc |
|
| 31 |
12 30
|
eqeltrd |
|
| 32 |
31
|
expr |
|
| 33 |
32
|
ralrimdva |
|
| 34 |
7 33
|
jcad |
|
| 35 |
|
haustop |
|
| 36 |
13 35
|
syl |
|
| 37 |
2
|
toptopon |
|
| 38 |
36 37
|
sylib |
|
| 39 |
|
cmptop |
|
| 40 |
22 39
|
syl |
|
| 41 |
1
|
toptopon |
|
| 42 |
40 41
|
sylib |
|
| 43 |
|
iscncl |
|
| 44 |
38 42 43
|
syl2anc |
|
| 45 |
34 44
|
sylibrd |
|
| 46 |
|
simp3 |
|
| 47 |
45 46
|
jctild |
|
| 48 |
|
ishmeo |
|
| 49 |
47 48
|
imbitrrdi |
|
| 50 |
3 49
|
impbid2 |
|