Metamath Proof Explorer


Theorem cmphmph

Description: Compactness is a topological property-that is, for any two homeomorphic topologies, either both are compact or neither is. (Contributed by Jeff Hankins, 30-Jun-2009) (Revised by Mario Carneiro, 23-Aug-2015)

Ref Expression
Assertion cmphmph J K J Comp K Comp

Proof

Step Hyp Ref Expression
1 hmph J K J Homeo K
2 n0 J Homeo K f f J Homeo K
3 eqid J = J
4 eqid K = K
5 3 4 hmeof1o f J Homeo K f : J 1-1 onto K
6 f1ofo f : J 1-1 onto K f : J onto K
7 5 6 syl f J Homeo K f : J onto K
8 hmeocn f J Homeo K f J Cn K
9 4 cncmp J Comp f : J onto K f J Cn K K Comp
10 9 3expb J Comp f : J onto K f J Cn K K Comp
11 10 expcom f : J onto K f J Cn K J Comp K Comp
12 7 8 11 syl2anc f J Homeo K J Comp K Comp
13 12 exlimiv f f J Homeo K J Comp K Comp
14 2 13 sylbi J Homeo K J Comp K Comp
15 1 14 sylbi J K J Comp K Comp