Metamath Proof Explorer


Theorem cmpidelt

Description: A magma right and left identity element keeps the other elements unchanged. (Contributed by FL, 12-Dec-2009) (Revised by Mario Carneiro, 22-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cmpidelt.1 X = ran G
cmpidelt.2 U = GId G
Assertion cmpidelt G Magma ExId A X U G A = A A G U = A

Proof

Step Hyp Ref Expression
1 cmpidelt.1 X = ran G
2 cmpidelt.2 U = GId G
3 1 2 idrval G Magma ExId U = ι u X | x X u G x = x x G u = x
4 3 eqcomd G Magma ExId ι u X | x X u G x = x x G u = x = U
5 1 2 iorlid G Magma ExId U X
6 1 exidu1 G Magma ExId ∃! u X x X u G x = x x G u = x
7 oveq1 u = U u G x = U G x
8 7 eqeq1d u = U u G x = x U G x = x
9 8 ovanraleqv u = U x X u G x = x x G u = x x X U G x = x x G U = x
10 9 riota2 U X ∃! u X x X u G x = x x G u = x x X U G x = x x G U = x ι u X | x X u G x = x x G u = x = U
11 5 6 10 syl2anc G Magma ExId x X U G x = x x G U = x ι u X | x X u G x = x x G u = x = U
12 4 11 mpbird G Magma ExId x X U G x = x x G U = x
13 oveq2 x = A U G x = U G A
14 id x = A x = A
15 13 14 eqeq12d x = A U G x = x U G A = A
16 oveq1 x = A x G U = A G U
17 16 14 eqeq12d x = A x G U = x A G U = A
18 15 17 anbi12d x = A U G x = x x G U = x U G A = A A G U = A
19 18 rspccva x X U G x = x x G U = x A X U G A = A A G U = A
20 12 19 sylan G Magma ExId A X U G A = A A G U = A