Metamath Proof Explorer


Theorem cmpkgen

Description: A compact space is compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Assertion cmpkgen J Comp J ran 𝑘Gen

Proof

Step Hyp Ref Expression
1 eqid J = J
2 cmptop J Comp J Top
3 2 adantr J Comp x J J Top
4 1 topopn J Top J J
5 3 4 syl J Comp x J J J
6 simpr J Comp x J x J
7 6 snssd J Comp x J x J
8 opnneiss J Top J J x J J nei J x
9 3 5 7 8 syl3anc J Comp x J J nei J x
10 1 restid J Top J 𝑡 J = J
11 3 10 syl J Comp x J J 𝑡 J = J
12 simpl J Comp x J J Comp
13 11 12 eqeltrd J Comp x J J 𝑡 J Comp
14 oveq2 k = J J 𝑡 k = J 𝑡 J
15 14 eleq1d k = J J 𝑡 k Comp J 𝑡 J Comp
16 15 rspcev J nei J x J 𝑡 J Comp k nei J x J 𝑡 k Comp
17 9 13 16 syl2anc J Comp x J k nei J x J 𝑡 k Comp
18 1 2 17 llycmpkgen2 J Comp J ran 𝑘Gen