Database
BASIC TOPOLOGY
Topology
Compactly generated spaces
cmpkgen
Next ⟩
llycmpkgen
Metamath Proof Explorer
Ascii
Unicode
Theorem
cmpkgen
Description:
A compact space is compactly generated.
(Contributed by
Mario Carneiro
, 21-Mar-2015)
Ref
Expression
Assertion
cmpkgen
⊢
J
∈
Comp
→
J
∈
ran
⁡
𝑘Gen
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
⋃
J
=
⋃
J
2
cmptop
⊢
J
∈
Comp
→
J
∈
Top
3
2
adantr
⊢
J
∈
Comp
∧
x
∈
⋃
J
→
J
∈
Top
4
1
topopn
⊢
J
∈
Top
→
⋃
J
∈
J
5
3
4
syl
⊢
J
∈
Comp
∧
x
∈
⋃
J
→
⋃
J
∈
J
6
simpr
⊢
J
∈
Comp
∧
x
∈
⋃
J
→
x
∈
⋃
J
7
6
snssd
⊢
J
∈
Comp
∧
x
∈
⋃
J
→
x
⊆
⋃
J
8
opnneiss
⊢
J
∈
Top
∧
⋃
J
∈
J
∧
x
⊆
⋃
J
→
⋃
J
∈
nei
⁡
J
⁡
x
9
3
5
7
8
syl3anc
⊢
J
∈
Comp
∧
x
∈
⋃
J
→
⋃
J
∈
nei
⁡
J
⁡
x
10
1
restid
⊢
J
∈
Top
→
J
↾
𝑡
⋃
J
=
J
11
3
10
syl
⊢
J
∈
Comp
∧
x
∈
⋃
J
→
J
↾
𝑡
⋃
J
=
J
12
simpl
⊢
J
∈
Comp
∧
x
∈
⋃
J
→
J
∈
Comp
13
11
12
eqeltrd
⊢
J
∈
Comp
∧
x
∈
⋃
J
→
J
↾
𝑡
⋃
J
∈
Comp
14
oveq2
⊢
k
=
⋃
J
→
J
↾
𝑡
k
=
J
↾
𝑡
⋃
J
15
14
eleq1d
⊢
k
=
⋃
J
→
J
↾
𝑡
k
∈
Comp
↔
J
↾
𝑡
⋃
J
∈
Comp
16
15
rspcev
⊢
⋃
J
∈
nei
⁡
J
⁡
x
∧
J
↾
𝑡
⋃
J
∈
Comp
→
∃
k
∈
nei
⁡
J
⁡
x
J
↾
𝑡
k
∈
Comp
17
9
13
16
syl2anc
⊢
J
∈
Comp
∧
x
∈
⋃
J
→
∃
k
∈
nei
⁡
J
⁡
x
J
↾
𝑡
k
∈
Comp
18
1
2
17
llycmpkgen2
⊢
J
∈
Comp
→
J
∈
ran
⁡
𝑘Gen