Step |
Hyp |
Ref |
Expression |
1 |
|
cmpsub.1 |
|
2 |
|
rabexg |
|
3 |
2
|
ad2antrr |
|
4 |
|
ssrab2 |
|
5 |
|
elpwg |
|
6 |
4 5
|
mpbiri |
|
7 |
3 6
|
syl |
|
8 |
|
unieq |
|
9 |
8
|
sseq2d |
|
10 |
|
pweq |
|
11 |
10
|
ineq1d |
|
12 |
11
|
rexeqdv |
|
13 |
9 12
|
imbi12d |
|
14 |
13
|
rspcva |
|
15 |
7 14
|
sylan |
|
16 |
15
|
ex |
|
17 |
1
|
restuni |
|
18 |
17
|
adantr |
|
19 |
18
|
eqeq1d |
|
20 |
|
velpw |
|
21 |
|
eleq2 |
|
22 |
|
eluni |
|
23 |
21 22
|
bitrdi |
|
24 |
23
|
adantl |
|
25 |
|
ssel |
|
26 |
1
|
sseq2i |
|
27 |
|
uniexg |
|
28 |
|
ssexg |
|
29 |
28
|
ancoms |
|
30 |
27 29
|
sylan |
|
31 |
26 30
|
sylan2b |
|
32 |
|
elrest |
|
33 |
31 32
|
syldan |
|
34 |
|
inss1 |
|
35 |
|
sseq1 |
|
36 |
34 35
|
mpbiri |
|
37 |
36
|
sselda |
|
38 |
37
|
3ad2antl3 |
|
39 |
38
|
3adant2 |
|
40 |
|
ineq1 |
|
41 |
40
|
eleq1d |
|
42 |
|
simp12 |
|
43 |
|
eleq1 |
|
44 |
43
|
biimpa |
|
45 |
44
|
3ad2antl3 |
|
46 |
45
|
3adant3 |
|
47 |
41 42 46
|
elrabd |
|
48 |
|
vex |
|
49 |
|
eleq2 |
|
50 |
|
eleq1 |
|
51 |
49 50
|
anbi12d |
|
52 |
48 51
|
spcev |
|
53 |
39 47 52
|
syl2anc |
|
54 |
53
|
3exp |
|
55 |
54
|
rexlimdv3a |
|
56 |
33 55
|
sylbid |
|
57 |
56
|
com23 |
|
58 |
57
|
com4l |
|
59 |
25 58
|
sylcom |
|
60 |
59
|
com24 |
|
61 |
60
|
impcom |
|
62 |
61
|
impd |
|
63 |
62
|
exlimdv |
|
64 |
63
|
adantr |
|
65 |
24 64
|
sylbid |
|
66 |
65
|
ex |
|
67 |
20 66
|
sylan2b |
|
68 |
67
|
imp |
|
69 |
|
eluni |
|
70 |
68 69
|
syl6ibr |
|
71 |
70
|
ssrdv |
|
72 |
|
pm2.27 |
|
73 |
|
elin |
|
74 |
|
vex |
|
75 |
|
eqeq1 |
|
76 |
75
|
rexbidv |
|
77 |
74 76
|
elab |
|
78 |
|
velpw |
|
79 |
|
ssel |
|
80 |
|
ineq1 |
|
81 |
80
|
eleq1d |
|
82 |
81
|
elrab |
|
83 |
|
eleq1a |
|
84 |
82 83
|
simplbiim |
|
85 |
79 84
|
syl6 |
|
86 |
85
|
2a1d |
|
87 |
86
|
adantr |
|
88 |
78 87
|
sylanb |
|
89 |
88
|
3imp |
|
90 |
89
|
rexlimdv |
|
91 |
77 90
|
syl5bi |
|
92 |
91
|
ssrdv |
|
93 |
|
vex |
|
94 |
93
|
abrexex |
|
95 |
94
|
elpw |
|
96 |
92 95
|
sylibr |
|
97 |
|
abrexfi |
|
98 |
97
|
ad2antlr |
|
99 |
98
|
3adant3 |
|
100 |
96 99
|
elind |
|
101 |
|
dfss |
|
102 |
101
|
biimpi |
|
103 |
|
uniiun |
|
104 |
103
|
ineq2i |
|
105 |
|
iunin2 |
|
106 |
|
incom |
|
107 |
106
|
a1i |
|
108 |
107
|
iuneq2i |
|
109 |
104 105 108
|
3eqtr2i |
|
110 |
102 109
|
eqtrdi |
|
111 |
110
|
3ad2ant2 |
|
112 |
18
|
ad2antrl |
|
113 |
112
|
3adant1 |
|
114 |
|
vex |
|
115 |
114
|
inex1 |
|
116 |
115
|
dfiun2 |
|
117 |
116
|
a1i |
|
118 |
111 113 117
|
3eqtr3d |
|
119 |
|
unieq |
|
120 |
119
|
rspceeqv |
|
121 |
100 118 120
|
syl2anc |
|
122 |
121
|
3exp |
|
123 |
73 122
|
sylbi |
|
124 |
123
|
rexlimiv |
|
125 |
72 124
|
syl6 |
|
126 |
125
|
com3r |
|
127 |
71 126
|
mpd |
|
128 |
127
|
ex |
|
129 |
19 128
|
sylbird |
|
130 |
129
|
com23 |
|
131 |
16 130
|
syld |
|
132 |
131
|
ralrimdva |
|