Metamath Proof Explorer


Theorem cmscmet

Description: The induced metric on a complete normed group is complete. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses iscms.1 X = Base M
iscms.2 D = dist M X × X
Assertion cmscmet M CMetSp D CMet X

Proof

Step Hyp Ref Expression
1 iscms.1 X = Base M
2 iscms.2 D = dist M X × X
3 1 2 iscms M CMetSp M MetSp D CMet X
4 3 simprbi M CMetSp D CMet X