Database
BASIC TOPOLOGY
Metric subcomplex vector spaces
Banach spaces and subcomplex Hilbert spaces
cmsms
Next ⟩
cmspropd
Metamath Proof Explorer
Ascii
Unicode
Theorem
cmsms
Description:
A complete metric space is a metric space.
(Contributed by
Mario Carneiro
, 15-Oct-2015)
Ref
Expression
Assertion
cmsms
⊢
G
∈
CMetSp
→
G
∈
MetSp
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
Base
G
=
Base
G
2
eqid
⊢
dist
⁡
G
↾
Base
G
×
Base
G
=
dist
⁡
G
↾
Base
G
×
Base
G
3
1
2
iscms
⊢
G
∈
CMetSp
↔
G
∈
MetSp
∧
dist
⁡
G
↾
Base
G
×
Base
G
∈
CMet
⁡
Base
G
4
3
simplbi
⊢
G
∈
CMetSp
→
G
∈
MetSp