Metamath Proof Explorer


Theorem cmsms

Description: A complete metric space is a metric space. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Assertion cmsms G CMetSp G MetSp

Proof

Step Hyp Ref Expression
1 eqid Base G = Base G
2 eqid dist G Base G × Base G = dist G Base G × Base G
3 1 2 iscms G CMetSp G MetSp dist G Base G × Base G CMet Base G
4 3 simplbi G CMetSp G MetSp