Metamath Proof Explorer


Theorem cmspropd

Description: Property deduction for a complete metric space. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses cmspropd.1 φ B = Base K
cmspropd.2 φ B = Base L
cmspropd.3 φ dist K B × B = dist L B × B
cmspropd.4 φ TopOpen K = TopOpen L
Assertion cmspropd φ K CMetSp L CMetSp

Proof

Step Hyp Ref Expression
1 cmspropd.1 φ B = Base K
2 cmspropd.2 φ B = Base L
3 cmspropd.3 φ dist K B × B = dist L B × B
4 cmspropd.4 φ TopOpen K = TopOpen L
5 1 2 3 4 mspropd φ K MetSp L MetSp
6 1 sqxpeqd φ B × B = Base K × Base K
7 6 reseq2d φ dist K B × B = dist K Base K × Base K
8 3 7 eqtr3d φ dist L B × B = dist K Base K × Base K
9 2 sqxpeqd φ B × B = Base L × Base L
10 9 reseq2d φ dist L B × B = dist L Base L × Base L
11 8 10 eqtr3d φ dist K Base K × Base K = dist L Base L × Base L
12 1 2 eqtr3d φ Base K = Base L
13 12 fveq2d φ CMet Base K = CMet Base L
14 11 13 eleq12d φ dist K Base K × Base K CMet Base K dist L Base L × Base L CMet Base L
15 5 14 anbi12d φ K MetSp dist K Base K × Base K CMet Base K L MetSp dist L Base L × Base L CMet Base L
16 eqid Base K = Base K
17 eqid dist K Base K × Base K = dist K Base K × Base K
18 16 17 iscms K CMetSp K MetSp dist K Base K × Base K CMet Base K
19 eqid Base L = Base L
20 eqid dist L Base L × Base L = dist L Base L × Base L
21 19 20 iscms L CMetSp L MetSp dist L Base L × Base L CMet Base L
22 15 18 21 3bitr4g φ K CMetSp L CMetSp