Metamath Proof Explorer


Theorem cmsss

Description: The restriction of a complete metric space is complete iff it is closed. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses cmsss.h K = M 𝑠 A
cmsss.x X = Base M
cmsss.j J = TopOpen M
Assertion cmsss M CMetSp A X K CMetSp A Clsd J

Proof

Step Hyp Ref Expression
1 cmsss.h K = M 𝑠 A
2 cmsss.x X = Base M
3 cmsss.j J = TopOpen M
4 simpr M CMetSp A X A X
5 xpss12 A X A X A × A X × X
6 4 5 sylancom M CMetSp A X A × A X × X
7 6 resabs1d M CMetSp A X dist M X × X A × A = dist M A × A
8 2 fvexi X V
9 8 ssex A X A V
10 9 adantl M CMetSp A X A V
11 eqid dist M = dist M
12 1 11 ressds A V dist M = dist K
13 10 12 syl M CMetSp A X dist M = dist K
14 1 2 ressbas2 A X A = Base K
15 14 adantl M CMetSp A X A = Base K
16 15 sqxpeqd M CMetSp A X A × A = Base K × Base K
17 13 16 reseq12d M CMetSp A X dist M A × A = dist K Base K × Base K
18 7 17 eqtrd M CMetSp A X dist M X × X A × A = dist K Base K × Base K
19 15 fveq2d M CMetSp A X CMet A = CMet Base K
20 18 19 eleq12d M CMetSp A X dist M X × X A × A CMet A dist K Base K × Base K CMet Base K
21 eqid dist M X × X = dist M X × X
22 2 21 cmscmet M CMetSp dist M X × X CMet X
23 22 adantr M CMetSp A X dist M X × X CMet X
24 eqid MetOpen dist M X × X = MetOpen dist M X × X
25 24 cmetss dist M X × X CMet X dist M X × X A × A CMet A A Clsd MetOpen dist M X × X
26 23 25 syl M CMetSp A X dist M X × X A × A CMet A A Clsd MetOpen dist M X × X
27 20 26 bitr3d M CMetSp A X dist K Base K × Base K CMet Base K A Clsd MetOpen dist M X × X
28 cmsms M CMetSp M MetSp
29 ressms M MetSp A V M 𝑠 A MetSp
30 1 29 eqeltrid M MetSp A V K MetSp
31 28 9 30 syl2an M CMetSp A X K MetSp
32 eqid Base K = Base K
33 eqid dist K Base K × Base K = dist K Base K × Base K
34 32 33 iscms K CMetSp K MetSp dist K Base K × Base K CMet Base K
35 34 baib K MetSp K CMetSp dist K Base K × Base K CMet Base K
36 31 35 syl M CMetSp A X K CMetSp dist K Base K × Base K CMet Base K
37 28 adantr M CMetSp A X M MetSp
38 3 2 21 mstopn M MetSp J = MetOpen dist M X × X
39 37 38 syl M CMetSp A X J = MetOpen dist M X × X
40 39 fveq2d M CMetSp A X Clsd J = Clsd MetOpen dist M X × X
41 40 eleq2d M CMetSp A X A Clsd J A Clsd MetOpen dist M X × X
42 27 36 41 3bitr4d M CMetSp A X K CMetSp A Clsd J