Metamath Proof Explorer


Theorem cmtcomN

Description: Commutation is symmetric. Theorem 2(v) in Kalmbach p. 22. ( cmcmi analog.) (Contributed by NM, 7-Nov-2011) (New usage is discouraged.)

Ref Expression
Hypotheses cmtcom.b B = Base K
cmtcom.c C = cm K
Assertion cmtcomN K OML X B Y B X C Y Y C X

Proof

Step Hyp Ref Expression
1 cmtcom.b B = Base K
2 cmtcom.c C = cm K
3 1 2 cmtcomlemN K OML X B Y B X C Y Y C X
4 1 2 cmtcomlemN K OML Y B X B Y C X X C Y
5 4 3com23 K OML X B Y B Y C X X C Y
6 3 5 impbid K OML X B Y B X C Y Y C X