Metamath Proof Explorer


Theorem cn1lem

Description: A sufficient condition for a function to be continuous. (Contributed by Mario Carneiro, 9-Feb-2014)

Ref Expression
Hypotheses cn1lem.1 F :
cn1lem.2 z A F z F A z A
Assertion cn1lem A x + y + z z A < y F z F A < x

Proof

Step Hyp Ref Expression
1 cn1lem.1 F :
2 cn1lem.2 z A F z F A z A
3 simpr A x + x +
4 simpr A x + z z
5 simpll A x + z A
6 4 5 2 syl2anc A x + z F z F A z A
7 1 ffvelrni z F z
8 4 7 syl A x + z F z
9 1 ffvelrni A F A
10 5 9 syl A x + z F A
11 8 10 subcld A x + z F z F A
12 11 abscld A x + z F z F A
13 4 5 subcld A x + z z A
14 13 abscld A x + z z A
15 rpre x + x
16 15 ad2antlr A x + z x
17 lelttr F z F A z A x F z F A z A z A < x F z F A < x
18 12 14 16 17 syl3anc A x + z F z F A z A z A < x F z F A < x
19 6 18 mpand A x + z z A < x F z F A < x
20 19 ralrimiva A x + z z A < x F z F A < x
21 breq2 y = x z A < y z A < x
22 21 rspceaimv x + z z A < x F z F A < x y + z z A < y F z F A < x
23 3 20 22 syl2anc A x + y + z z A < y F z F A < x