Metamath Proof Explorer


Theorem cnaddabloOLD

Description: Obsolete version of cnaddabl . Complex number addition is an Abelian group operation. (Contributed by NM, 5-Nov-2006) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion cnaddabloOLD + AbelOp

Proof

Step Hyp Ref Expression
1 cnex V
2 ax-addf + : ×
3 addass x y z x + y + z = x + y + z
4 0cn 0
5 addid2 x 0 + x = x
6 negcl x x
7 addcom x x x + x = - x + x
8 6 7 mpdan x x + x = - x + x
9 negid x x + x = 0
10 8 9 eqtr3d x - x + x = 0
11 1 2 3 4 5 6 10 isgrpoi + GrpOp
12 2 fdmi dom + = ×
13 addcom x y x + y = y + x
14 11 12 13 isabloi + AbelOp