Metamath Proof Explorer


Theorem cnaddinv

Description: Value of the group inverse of complex number addition. See also cnfldneg . (Contributed by Steve Rodriguez, 3-Dec-2006) (Revised by AV, 26-Aug-2021) (New usage is discouraged.)

Ref Expression
Hypothesis cnaddabl.g G = Base ndx + ndx +
Assertion cnaddinv A inv g G A = A

Proof

Step Hyp Ref Expression
1 cnaddabl.g G = Base ndx + ndx +
2 negid A A + A = 0
3 1 cnaddabl G Abel
4 ablgrp G Abel G Grp
5 3 4 ax-mp G Grp
6 id A A
7 negcl A A
8 cnex V
9 1 grpbase V = Base G
10 8 9 ax-mp = Base G
11 addex + V
12 1 grpplusg + V + = + G
13 11 12 ax-mp + = + G
14 1 cnaddid 0 G = 0
15 14 eqcomi 0 = 0 G
16 eqid inv g G = inv g G
17 10 13 15 16 grpinvid1 G Grp A A inv g G A = A A + A = 0
18 5 6 7 17 mp3an2i A inv g G A = A A + A = 0
19 2 18 mpbird A inv g G A = A