Metamath Proof Explorer


Theorem cnbdibl

Description: A continuous bounded function is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses cnbdibl.a φ A dom vol
cnbdibl.va φ vol A
cnbdibl.f φ F : A cn
cnbdibl.bd φ x y dom F F y x
Assertion cnbdibl φ F 𝐿 1

Proof

Step Hyp Ref Expression
1 cnbdibl.a φ A dom vol
2 cnbdibl.va φ vol A
3 cnbdibl.f φ F : A cn
4 cnbdibl.bd φ x y dom F F y x
5 cnmbf A dom vol F : A cn F MblFn
6 1 3 5 syl2anc φ F MblFn
7 cncff F : A cn F : A
8 fdm F : A dom F = A
9 3 7 8 3syl φ dom F = A
10 9 fveq2d φ vol dom F = vol A
11 10 2 eqeltrd φ vol dom F
12 bddibl F MblFn vol dom F x y dom F F y x F 𝐿 1
13 6 11 4 12 syl3anc φ F 𝐿 1