Metamath Proof Explorer


Theorem cnblcld

Description: Two ways to write the closed ball centered at zero. (Contributed by Mario Carneiro, 8-Sep-2015)

Ref Expression
Hypothesis cnblcld.1 D = abs
Assertion cnblcld R * abs -1 0 R = x | 0 D x R

Proof

Step Hyp Ref Expression
1 cnblcld.1 D = abs
2 absf abs :
3 ffn abs : abs Fn
4 elpreima abs Fn x abs -1 0 R x x 0 R
5 2 3 4 mp2b x abs -1 0 R x x 0 R
6 df-3an x * 0 x x R x * 0 x x R
7 abscl x x
8 7 rexrd x x *
9 absge0 x 0 x
10 8 9 jca x x * 0 x
11 10 adantl R * x x * 0 x
12 11 biantrurd R * x x R x * 0 x x R
13 6 12 bitr4id R * x x * 0 x x R x R
14 0xr 0 *
15 simpl R * x R *
16 elicc1 0 * R * x 0 R x * 0 x x R
17 14 15 16 sylancr R * x x 0 R x * 0 x x R
18 0cn 0
19 1 cnmetdval 0 x 0 D x = 0 x
20 abssub 0 x 0 x = x 0
21 19 20 eqtrd 0 x 0 D x = x 0
22 18 21 mpan x 0 D x = x 0
23 subid1 x x 0 = x
24 23 fveq2d x x 0 = x
25 22 24 eqtrd x 0 D x = x
26 25 adantl R * x 0 D x = x
27 26 breq1d R * x 0 D x R x R
28 13 17 27 3bitr4d R * x x 0 R 0 D x R
29 28 pm5.32da R * x x 0 R x 0 D x R
30 5 29 syl5bb R * x abs -1 0 R x 0 D x R
31 30 abbi2dv R * abs -1 0 R = x | x 0 D x R
32 df-rab x | 0 D x R = x | x 0 D x R
33 31 32 eqtr4di R * abs -1 0 R = x | 0 D x R