Metamath Proof Explorer


Theorem cnbn

Description: The set of complex numbers is a complex Banach space. (Contributed by Steve Rodriguez, 4-Jan-2007) (New usage is discouraged.)

Ref Expression
Hypothesis cnbn.6 U = + × abs
Assertion cnbn U CBan

Proof

Step Hyp Ref Expression
1 cnbn.6 U = + × abs
2 1 cnnv U NrmCVec
3 eqid + × abs = + × abs
4 eqid abs = abs
5 3 4 cnims abs = IndMet + × abs
6 5 eqcomi IndMet + × abs = abs
7 6 cncmet IndMet + × abs CMet
8 1 cnnvba = BaseSet U
9 1 fveq2i IndMet U = IndMet + × abs
10 9 eqcomi IndMet + × abs = IndMet U
11 8 10 iscbn U CBan U NrmCVec IndMet + × abs CMet
12 2 7 11 mpbir2an U CBan