Metamath Proof Explorer


Theorem cncfcn1

Description: Relate complex function continuity to topological continuity. (Contributed by Paul Chapman, 28-Nov-2007) (Revised by Mario Carneiro, 7-Sep-2015)

Ref Expression
Hypothesis cncfcn1.1 J = TopOpen fld
Assertion cncfcn1 cn = J Cn J

Proof

Step Hyp Ref Expression
1 cncfcn1.1 J = TopOpen fld
2 ssid
3 1 cnfldtopon J TopOn
4 3 toponrestid J = J 𝑡
5 1 4 4 cncfcn cn = J Cn J
6 2 2 5 mp2an cn = J Cn J