Metamath Proof Explorer


Theorem cncff

Description: A continuous complex function's domain and codomain. (Contributed by Paul Chapman, 17-Jan-2008) (Revised by Mario Carneiro, 25-Aug-2014)

Ref Expression
Assertion cncff F : A cn B F : A B

Proof

Step Hyp Ref Expression
1 cncfrss F : A cn B A
2 cncfrss2 F : A cn B B
3 elcncf A B F : A cn B F : A B x A y + z + w A x w < z F x F w < y
4 1 2 3 syl2anc F : A cn B F : A cn B F : A B x A y + z + w A x w < z F x F w < y
5 4 ibi F : A cn B F : A B x A y + z + w A x w < z F x F w < y
6 5 simpld F : A cn B F : A B