Metamath Proof Explorer


Theorem cncffvrn

Description: Change the codomain of a continuous complex function. (Contributed by Paul Chapman, 18-Oct-2007) (Revised by Mario Carneiro, 1-May-2015)

Ref Expression
Assertion cncffvrn C F : A cn B F : A cn C F : A C

Proof

Step Hyp Ref Expression
1 cncfi F : A cn B x A y + z + w A w x < z F w F x < y
2 1 3expb F : A cn B x A y + z + w A w x < z F w F x < y
3 2 ralrimivva F : A cn B x A y + z + w A w x < z F w F x < y
4 3 adantl C F : A cn B x A y + z + w A w x < z F w F x < y
5 cncfrss F : A cn B A
6 simpl C F : A cn B C
7 elcncf2 A C F : A cn C F : A C x A y + z + w A w x < z F w F x < y
8 5 6 7 syl2an2 C F : A cn B F : A cn C F : A C x A y + z + w A w x < z F w F x < y
9 4 8 mpbiran2d C F : A cn B F : A cn C F : A C