Metamath Proof Explorer


Theorem cncficcgt0

Description: A the absolute value of a continuous function on a closed interval, that is never 0, has a strictly positive lower bound. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses cncficcgt0.f F = x A B C
cncficcgt0.a φ A
cncficcgt0.b φ B
cncficcgt0.aleb φ A B
cncficcgt0.fcn φ F : A B cn 0
Assertion cncficcgt0 φ y + x A B y C

Proof

Step Hyp Ref Expression
1 cncficcgt0.f F = x A B C
2 cncficcgt0.a φ A
3 cncficcgt0.b φ B
4 cncficcgt0.aleb φ A B
5 cncficcgt0.fcn φ F : A B cn 0
6 cncff F : A B cn 0 F : A B 0
7 ffun F : A B 0 Fun F
8 5 6 7 3syl φ Fun F
9 8 adantr φ c A B Fun F
10 simpr φ c A B c A B
11 5 6 syl φ F : A B 0
12 11 fdmd φ dom F = A B
13 12 eqcomd φ A B = dom F
14 13 adantr φ c A B A B = dom F
15 10 14 eleqtrd φ c A B c dom F
16 fvco Fun F c dom F abs F c = F c
17 9 15 16 syl2anc φ c A B abs F c = F c
18 11 ffvelrnda φ c A B F c 0
19 18 eldifad φ c A B F c
20 19 recnd φ c A B F c
21 eldifsni F c 0 F c 0
22 18 21 syl φ c A B F c 0
23 20 22 absrpcld φ c A B F c +
24 17 23 eqeltrd φ c A B abs F c +
25 24 adantr φ c A B d A B abs F c abs F d abs F c +
26 nfv x φ c A B
27 nfcv _ x A B
28 nfcv _ x abs
29 nfmpt1 _ x x A B C
30 1 29 nfcxfr _ x F
31 28 30 nfco _ x abs F
32 nfcv _ x c
33 31 32 nffv _ x abs F c
34 nfcv _ x
35 nfcv _ x d
36 31 35 nffv _ x abs F d
37 33 34 36 nfbr x abs F c abs F d
38 27 37 nfralw x d A B abs F c abs F d
39 26 38 nfan x φ c A B d A B abs F c abs F d
40 fveq2 d = x abs F d = abs F x
41 40 breq2d d = x abs F c abs F d abs F c abs F x
42 41 rspccva d A B abs F c abs F d x A B abs F c abs F x
43 42 adantll φ c A B d A B abs F c abs F d x A B abs F c abs F x
44 absf abs :
45 44 a1i φ abs :
46 difss 0
47 ax-resscn
48 46 47 sstri 0
49 48 a1i φ 0
50 11 49 fssd φ F : A B
51 fcompt abs : F : A B abs F = z A B F z
52 45 50 51 syl2anc φ abs F = z A B F z
53 nfcv _ x z
54 30 53 nffv _ x F z
55 28 54 nffv _ x F z
56 nfcv _ z F x
57 fveq2 z = x F z = F x
58 57 fveq2d z = x F z = F x
59 55 56 58 cbvmpt z A B F z = x A B F x
60 59 a1i φ z A B F z = x A B F x
61 1 a1i φ F = x A B C
62 61 11 feq1dd φ x A B C : A B 0
63 62 fvmptelrn φ x A B C 0
64 61 63 fvmpt2d φ x A B F x = C
65 64 fveq2d φ x A B F x = C
66 65 mpteq2dva φ x A B F x = x A B C
67 52 60 66 3eqtrd φ abs F = x A B C
68 48 63 sselid φ x A B C
69 68 abscld φ x A B C
70 67 69 fvmpt2d φ x A B abs F x = C
71 70 ad4ant14 φ c A B d A B abs F c abs F d x A B abs F x = C
72 43 71 breqtrd φ c A B d A B abs F c abs F d x A B abs F c C
73 72 ex φ c A B d A B abs F c abs F d x A B abs F c C
74 39 73 ralrimi φ c A B d A B abs F c abs F d x A B abs F c C
75 33 nfeq2 x y = abs F c
76 breq1 y = abs F c y C abs F c C
77 75 76 ralbid y = abs F c x A B y C x A B abs F c C
78 77 rspcev abs F c + x A B abs F c C y + x A B y C
79 25 74 78 syl2anc φ c A B d A B abs F c abs F d y + x A B y C
80 ssidd φ
81 cncfss 0 A B cn 0 A B cn
82 49 80 81 syl2anc φ A B cn 0 A B cn
83 82 5 sseldd φ F : A B cn
84 abscncf abs : cn
85 84 a1i φ abs : cn
86 83 85 cncfco φ abs F : A B cn
87 2 3 4 86 evthicc φ a A B b A B abs F b abs F a c A B d A B abs F c abs F d
88 87 simprd φ c A B d A B abs F c abs F d
89 79 88 r19.29a φ y + x A B y C