Metamath Proof Explorer


Theorem cncfiooicc

Description: A continuous function F on an open interval ( A (,) B ) can be extended to a continuous function G on the corresponding closed interval, if it has a finite right limit R in A and a finite left limit L in B . F can be complex-valued. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses cncfiooicc.x xφ
cncfiooicc.g G=xABifx=ARifx=BLFx
cncfiooicc.a φA
cncfiooicc.b φB
cncfiooicc.f φF:ABcn
cncfiooicc.l φLFlimB
cncfiooicc.r φRFlimA
Assertion cncfiooicc φG:ABcn

Proof

Step Hyp Ref Expression
1 cncfiooicc.x xφ
2 cncfiooicc.g G=xABifx=ARifx=BLFx
3 cncfiooicc.a φA
4 cncfiooicc.b φB
5 cncfiooicc.f φF:ABcn
6 cncfiooicc.l φLFlimB
7 cncfiooicc.r φRFlimA
8 nfv xφA<B
9 3 adantr φA<BA
10 4 adantr φA<BB
11 simpr φA<BA<B
12 5 adantr φA<BF:ABcn
13 6 adantr φA<BLFlimB
14 7 adantr φA<BRFlimA
15 8 2 9 10 11 12 13 14 cncfiooicclem1 φA<BG:ABcn
16 limccl FlimA
17 16 7 sselid φR
18 17 snssd φR
19 ssid
20 19 a1i φ
21 cncfss RAcnRAcn
22 18 20 21 syl2anc φAcnRAcn
23 22 adantr φA=BAcnRAcn
24 3 rexrd φA*
25 iccid A*AA=A
26 24 25 syl φAA=A
27 oveq2 A=BAA=AB
28 26 27 sylan9req φA=BA=AB
29 28 eqcomd φA=BAB=A
30 simpr φA=BxABxAB
31 29 adantr φA=BxABAB=A
32 30 31 eleqtrd φA=BxABxA
33 elsni xAx=A
34 32 33 syl φA=BxABx=A
35 34 iftrued φA=BxABifx=ARifx=BLFx=R
36 29 35 mpteq12dva φA=BxABifx=ARifx=BLFx=xAR
37 2 36 eqtrid φA=BG=xAR
38 3 recnd φA
39 38 adantr φA=BA
40 17 adantr φA=BR
41 cncfdmsn ARxAR:AcnR
42 39 40 41 syl2anc φA=BxAR:AcnR
43 37 42 eqeltrd φA=BG:AcnR
44 23 43 sseldd φA=BG:Acn
45 28 oveq1d φA=BAcn=ABcn
46 44 45 eleqtrd φA=BG:ABcn
47 46 adantlr φ¬A<BA=BG:ABcn
48 simpll φ¬A<B¬A=Bφ
49 eqcom B=AA=B
50 49 biimpi B=AA=B
51 50 con3i ¬A=B¬B=A
52 51 adantl φ¬A<B¬A=B¬B=A
53 simplr φ¬A<B¬A=B¬A<B
54 pm4.56 ¬B=A¬A<B¬B=AA<B
55 54 biimpi ¬B=A¬A<B¬B=AA<B
56 52 53 55 syl2anc φ¬A<B¬A=B¬B=AA<B
57 48 4 syl φ¬A<B¬A=BB
58 48 3 syl φ¬A<B¬A=BA
59 57 58 lttrid φ¬A<B¬A=BB<A¬B=AA<B
60 56 59 mpbird φ¬A<B¬A=BB<A
61 0ss
62 eqid TopOpenfld=TopOpenfld
63 62 cnfldtop TopOpenfldTop
64 rest0 TopOpenfldTopTopOpenfld𝑡=
65 63 64 ax-mp TopOpenfld𝑡=
66 65 eqcomi =TopOpenfld𝑡
67 62 66 66 cncfcn cn=Cn
68 61 61 67 mp2an cn=Cn
69 cncfss cncn
70 61 19 69 mp2an cncn
71 68 70 eqsstrri Cncn
72 2 a1i φB<AG=xABifx=ARifx=BLFx
73 simpr φB<AB<A
74 24 adantr φB<AA*
75 4 rexrd φB*
76 75 adantr φB<AB*
77 icc0 A*B*AB=B<A
78 74 76 77 syl2anc φB<AAB=B<A
79 73 78 mpbird φB<AAB=
80 79 mpteq1d φB<AxABifx=ARifx=BLFx=xifx=ARifx=BLFx
81 mpt0 xifx=ARifx=BLFx=
82 81 a1i φB<Axifx=ARifx=BLFx=
83 72 80 82 3eqtrd φB<AG=
84 0cnf Cn
85 83 84 eqeltrdi φB<AGCn
86 71 85 sselid φB<AG:cn
87 79 eqcomd φB<A=AB
88 87 oveq1d φB<Acn=ABcn
89 86 88 eleqtrd φB<AG:ABcn
90 48 60 89 syl2anc φ¬A<B¬A=BG:ABcn
91 47 90 pm2.61dan φ¬A<BG:ABcn
92 15 91 pm2.61dan φG:ABcn